Go Beyond VFP's SQL with SQL
Server and MySQL

Tamar E. Granor

Tomorrow’s Solutions, LLC

Voice: 215-635-1958

Website: www.tomorrowssolutionslic.com
Email: tamar@tomorrowssolutionsllc.com

The subset of SQL in Visual FoxPro is useful for many tasks. But there's much more to SQL
than what VFP supports. Those additions make it easy to do a number of tasks that are

difficult in VFP.

In this session, we'll solve some common problems, using SQL elements that are supported by
SQL Server and MySQL, but not by VFP. Among the problems we'll explore are combining a set
of values contained in multiple records into a delimited list in a single record, working with

http://www.tomorrowssolutionsllc.com/
mailto:tamar@tomorrowssolutionsllc.com

Go Beyond VFP's SQL with SQL Server and MySQL

hierarchical data like corporate organization charts, finding the top N records for each group
in a result, and including summary records in grouped data.

Introduction

When FoxPro 2.0 was released nearly 35 years ago, it included some SQL commands. I fell
in love as soon as [started playing with them. Over the years, Visual FoxPro’s SQL subset
has grown, but there are still some tasks that are hard or impossible to do with SQL alone
in VFP, but a lot easier in other SQL dialects. In this session, I'll look at some of these tasks,
showing you how VFP requires a blend of SQL and Xbase code, but SQL Server and,
sometimes, MySQL allow them to be done with SQL code only.

You're unlikely to be choosing whether to store your data in VFP or in SQL Server based on
which one makes these tasks easier. However, when you switch from working with VFP
databases to working with SQL Server or MySQL databases, it’s easy to just keep doing
things the way you have been. The goal of this session is to show you how you can code
better with other engines by learning some new approaches.

To make them easier to compare, the examples use the Chinook database, which was
created specifically to allow such comparisons. You can download code to create Chinook
for SQL Server and MySQL at https://github.com/lerocha/chinook-database. The materials
for this session contain code to create a VFP version of Chinook as
Chinook_VisualFoxPro_AutoincrementPKs.PRG, as well as the VFP version of the database.
(Because I ran into some issues running the downloaded code to create Chinook for SQL
Server and MySQL, the materials also include the code for those.)

Chinook contains information for a fictitious online music-selling service. It tracks artists,
albums and tracks as well as customers and invoices. Figure 1 shows the database
structure; the diagram was generated by SQL Server Management Studio 2014.

Copyright 2024, Tamar E. Granor Page 2 of 47

https://github.com/lerocha/chinook-database

Go Beyond VFP's SQL with SQL Server and MySQL

Artist
¥ Artistld
Name
j
Album
¢ Albumlid
Title
Artistld
8
PlavlistTrack 8
7 Playlistid bo Track
% Trackid 9 Trackid
Name
g Alburld P MediaTvpe
MediaTypeld 2 MediaTypeld
e Genreld Name
Composer
@ Milliseconds
Plavlist Bytes
® Playlistld UnitPrice
Name
8
I
@
Invoice g Genre
7 Invoiceld ® Genreld
Customerld Invoiceline Name
InvoiceDate % Invoicelineld
BillingAddress Invoiceld
BillingCity O—————oq | Trackid
BillingState UnitPrice
BillingCountry Quantity
BillingPostalCode
Total
8
|
8 :
7 Emplovee
7 Employeeld Customer
LastName % Customerld
FirstName FirstName
Title LastName
ReportsTo Company
BirthDate Address
HireDate City
Address = foe) State
City Country
State PostalCode
Country Phone
PostalCode Fax
Phone Email
Fax SupportRepld
Email

Figure 1. The Chinook database has data on artists, albums, tracks and playlists, as well as about customers
and sales.

The examples in this session were tested in VFP 9 SP2 (with all service packs), SQL Server
2018, and MySQL 8.0.

Copyright 2024, Tamar E. Granor Page 3 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

Consolidate data from a field into a list

One of the most common questions I see in online VFP forums is how to group data,
consolidating the data from a particular field. If the consolidation you want is counting,
summing, or averaging, the task is simple; just use GROUP BY with the corresponding
aggregate function.

But if you want to create a comma-separated list of all the values or something like that,
there’s no SQL-only way to do it in VFP. SQL Server and MySQL each include a function that
makes the task simple.

The problem we’ll solve here is producing a comma-separated list of playlists for each
track. Figure 2 shows part of the results we’re after (in MySQL). (For some reason, the
Playlist table includes several repeated playlist names, so the results for many of the tracks
include some names twice, most noticeably “Music.”)

TracklD TrackMame FlayLists

1 For Those About To Rock (We Salute You) Heavy Metal Classic, Music, Music

2 Balls to the Wall Heawy Metal Classic, Music, Music

3 Fast As a Shark 90's Music,Heavy Metal Classic, Music,Music
4 Restless and Wild 90's Music,Heavy Metal Classic,Music, Music
5 Princess of the Dawn 20's Music,Heavy Metal Classic, Music, Music
g Put The Finger On You Music, Music

7 Let's Get It Up Music, Music

8 Inject The Venom Music, Music

9 Snowballed Music, Music

10 Evil Walks Music, Music

11 C.0.D. Music, Music

12 Breaking The Rules Music, Music

13 Might Of The Long Knives Music, Music

14 Spellbound Music, Music

15 Go Down Music,Music

16 Dog Eat Dog Music Music

Figure 2. Each language offers a different approach to creating a comma-separated list of data from different
records.

The VFP way

VFP’s SQL commands offer no way to combine the playlists like that. Instead, you have to
run a query to collect the raw data and then use a loop to combine the playlists for each
track. Listing 1 shows the code. (Like all the VFP examples in this paper, this one assumes
you've already opened the Chinook database.)

Listing 1. To consolidate data into a comma-separated list in VFP requires a combination of SQL and Xbase
code.

* Get the list with one record per combination
SELECT Track.TrackID, Track.Name AS TrackName, Playlist.Name AS PlaylListName ;
FROM Track ;

Copyright 2024, Tamar E. Granor Page 4 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

JOIN PlaylistTrack ;
ON Track.TrackID = PlaylistTrack.TrackID ;
JOIN Playlist ;
ON PlaylistTrack.PlaylistID = Playlist.PlaylistID ;
ORDER BY 1, 3 ;
INTO CURSOR csrTrackAndPlaylists

LOCAL cPlayLists, iTrackID, cTrackName

* Create a cursor to hold results
CREATE CURSOR csrTrackPlayLists (TrackID I, TrackName VARCHAR(200), PlayLists M)

SELECT csrTrackAndPlaylLists

iTrackID = csrTrackAndPlaylists.TrackID
cTrackName = csrTrackAndPlaylists.TrackName
cPlayLists v

* Loop through to gather data
SCAN
IF csrTrackAndPlaylists.TrackID <> m.iTrackID
* Finished current track
INSERT INTO csrTrackPlaylLists ;

VALUES (m.iTrackID, m.cTrackName, m.cPlayLists)
iTrackId = csrTrackAndPlaylists.TrackID
cTrackName = csrTrackAndPlaylists.TrackName
cPlaylLists = "'

ENDIF

cPlayLists = IIF(EMPTY(cPlayLists), '', m.cPlayLists + ', ') + ;
ALLTRIM(csrTrackAndPlaylists.PlaylistName)

ENDSCAN

* Save last record
INSERT INTO csrTrackPlaylLists ;
VALUES (m.iTrackID, m.cTrackName, m.cPlaylLists)

SELECT csrTrackPlayLists

The query also sorts the results by TrackID, which is necessary for the SCAN loop, and then
by playlist name within the list for each track, so the result has the products in alphabetical
order. (To avoid the duplication of same-named playlists, we could use DISTINCT in the

query.)

The SCAN loop builds up the list of playlists for a single track and then when we reach a
new track, adds a record to the result cursor and clears the cPlayLists variable, so we can
start over for the new track.

The code in Listing 1 is included in the VFP folder in the materials for this session as
TrackPlaylists.PRG

Copyright 2024, Tamar E. Granor Page 5 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

The SQL way

When I wrote the original version of this session in 2014, there were two ways to solve this
problem in SQL Server and they were both complicated. It took me four pages to explain
them and show examples. But SQL Server 2017 added a new function that provides a much
simpler solution. MySQL 8 has a similar function, though the syntax of the two functions is a
little different.

MysQL

The relevant function in MySQL is called GROUP_CONCAT(); it works with GROUP BY to
create a comma-separated list from the data in each record in the group.

GROUP_CONCATY() is versatile. It includes several optional clauses, including DISTINCT (to
let you cut the list of values down to unique values), ORDER BY (to let you specify the order
in which the values are concatenated), and SEPARATOR (to let you specify a separator
other than comma).

Listing 2 (TrackPlaylists.sql in the MySQL folder of the materials for this session) shows
the MySQL solution. We apply GROUP_CONCAT to the playlist name, using ORDER BY to
make the list alphabetical.

Listing 2. Consolidating a list of values is easy in MySQL because of the GROUP_CONCAT() function.

SELECT Track.TrackID, Track.Name AS TrackName,
GROUP_CONCAT(Playlist.Name ORDER BY 1) AS PlayLists
FROM Track
JOIN PlaylistTrack
ON Track.TrackId = PlaylistTrack.TrackId
JOIN PlaylList
ON PlaylistTrack.PlaylistId = Playlist.PlaylistId
GROUP BY TrackID, TrackName
ORDER BY 1;

SQL Server

The SQL Server function for this purpose is STRING_AGG and, as noted above, it was added
in SQL Server 2017. You pass the expression to consolidate and the separator to use.
Optionally, you can specify the order for the data using the WITHIN GROUP clause. If the
field list contains anything other than the field using STRING_AGG(), the query requires a
GROUP BY clause.

Listing 3 (TrackPlaylists.SQL in the SQLserver folder of the materials for this session)
shows the SQL Server 2017 solution for this problem. The parameters to STRING_AGG()
say to combine the Playlist. Name field with comma separators, and the WITHIN GROUP
clause sorts the data on the Playlist. Name field before combining.

Listing 3. The new STRING_AGG() function in SQL Server 2017 makes consolidating data from multiple
records easy.

SELECT Track.TrackID, Track.Name AS TrackName,

Copyright 2024, Tamar E. Granor Page 6 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

STRING_AGG(Playlist.Name, ',') WITHIN GROUP (ORDER BY Playlist.Name)
AS PlaylLists
FROM Track
JOIN PlaylistTrack
ON Track.TrackId = PlaylistTrack.TrackId
JOIN PlaylList
ON PlaylistTrack.PlaylistId = Playlist.PlaylistId
GROUP BY Track.TrackID, Track.Name
ORDER BY 1;

If you're using an older version of SQL Server, you'll find my original 2014 paper with the
other solutions on my website at
http://tomorrowssolutionsllc.com/ConferenceSessions/Go%20Beyond%20VFPs%20SQL
%20with%20SQL%20Server.pdf .

Handle self-referential hierarchies

Relational databases handle typical hierarchical relationships very well. When you have
something like customers, who place orders, which contain line items, representing
products sold, any relational database should do. You create one table for each type of
object and link them together with foreign keys.

Reporting on such data is easy, too. Fairly simple SQL queries let you collect the data you
want with a few joins and some filters.

But some types of data don’t lend themselves to this sort of model. For example, the
organization chart for a company contains only people, with some people managed by
other people, who might in turn be managed by other people. Clearly, records for all people
should be contained in a single table; you wouldn’t want separate tables for managers and
non-manager employees.

But how do you represent the manager relationship? One commonly used approach is to
add a field to the person record that points to the record (in the same table) for his or her
manager.

From a data-modeling point of view, this is a simple solution. However, reporting on such
data can be complex. How do you trace the hierarchy from a given employee through their
manager to the manager’s manager and so on up the chain of command? Given a manager,
how do you find everyone who ultimately reports to that person (that is, reports to the
person directly, or to someone managed by that person, or to someone managed by
someone who is managed by that person, and so on down the line)?

We’ll look at two approaches to dealing with this kind of data and show how much easier it
is to get what you want in SQL Server and MySQL than in VFP.

The traditional solution

As described above, the traditional way to handle this type of hierarchy is to add a field to
identify a record’s parent (such as an employee’s manager). The Chinook database has a

Copyright 2024, Tamar E. Granor Page 7 of 47

http://tomorrowssolutionsllc.com/ConferenceSessions/Go%20Beyond%20VFPs%20SQL%20with%20SQL%20Server.pdf
http://tomorrowssolutionsllc.com/ConferenceSessions/Go%20Beyond%20VFPs%20SQL%20with%20SQL%20Server.pdf

Go Beyond VFP's SQL with SQL Server and MySQL

field in the Employee table called ReportsTo. It contains the primary key of the employee’s
manager; since that’s also a record in Employee, the table is self-referential.

Who manages an employee?

Determining the manager of an individual employee is quite simple. It just requires a self-
join of the Employee table. That is, you use two instances of the Employee table, one to get
the employee and one to get the manager. Listing 4 (EmpWMgr.PRG in the VFP folder of
the materials for this session) shows the VFP version of the query that retrieves this data
for a single employee (by specifying the employee’s primary key; 4, in this case).

Listing 4. Use a self-join to connect an employee with his or her manager.

SELECT Emp.FirstName AS EmpFirst, ;
Emp.LastName AS EmpLast, ;
Mgr.FirstName AS MgrFirst, ;
Mgr.LastName AS MgrlLast ;

FROM Employee Emp ;
LEFT JOIN Employee Mgr ;
ON Emp.ReportsTo = Mgr.EmployeelD ;
WHERE Emp.EmployeelD = 4 ;
INTO CURSOR csrEmpAndMgr

With a self-join, you have to specify a local alias for at least one instance of the table. Here,
for clarity, we specify a local alias for both instances, calling the one for the employee Emp,
and the one for the manager Mgr. Once you specify a local alias for a table, you must use
that alias every time you refer to the table; you can’t use its actual name.

The SQL version of the same task is identical in both MySQL and SQL Server; they’re both
EmpWMgr.SQL in the appropriate folder of the materials for this session.

It's easy to extend these queries to retrieve the names of all employees with each one’s
manager. Just remove the WHERE clause from each query.

What'’s the management hierarchy for an employee?

Things start to get more interesting when you want to trace the whole management
hierarchy for an employee. That is, given a particular employee, retrieve the name of their
manager and of the manager’s manager and of the manager’s manager’s manager and so on
up the line until you reach the person in charge.

Since we don’t know how many levels we might have, rather than putting all the data into a
single record, here we create a cursor with one record for each level. The specified
employee comes first, and then we climb the hierarchy so that the big boss is last.

VFP’s SQL alone doesn’t offer a solution for this problem. Instead, you need to combine a
little bit of SQL with some Xbase code, as in Listing 5. (This program is included in the VFP
folder of the materials for this session as EmpHierarchy.PRG.)

Copyright 2024, Tamar E. Granor Page 8 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

Listing 5. To track a hierarchy to the top in VFP calls for a mix of SQL and Xbase code.

* Start with a single employee and create a
* hierarchy up to the top dog.
LPARAMETERS iEmpID

LOCAL iCurrentID , ilLevel

CREATE CURSOR EmpHierarchy ;
(cFirst C(15), clLast C(20) , iLevel I)

USE Employee IN © ORDER EmployeeID

iCurrentID = iEmpID
ilevel =1

DO WHILE NOT EMPTY(iCurrentID)
SEEK iCurrentID IN Employee

INSERT INTO EmpHierarchy ;
VALUES (Employee.FirstName, ;
Employee.LastName, ;
m.iLevel)

iCurrentID = Employee.ReportsTo
iLevel = m.iLevel + 1
ENDDO

USE IN Employee
SELECT EmpHierarchy

The strategy is to start with the employee you're interested in, insert her data into the
result cursor, then grab the PK for her manager and repeat until you reach an employee
whose manager field is empty. Figure 3 shows the results when you pass 7 as the
parameter.

Emphierarchy E=N Eol =
cfirst Clast Ilevel 2
Fobert :King 1
Michael Mitchell: 2

%m Adams 3

y
| [>

Figure 3. Running the query in Listing 5, passing 7 as the parameter, gives these results.

The SQL engines provide a simpler solution, by using a Common Table Expression (CTE). A
CTE is a query that precedes the main query and provides a result that is then used in the
main query. While similar to a derived table, CTEs have a couple of advantages.

Copyright 2024, Tamar E. Granor Page 9 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

First, the result can be included multiple times in the main query (with different aliases). A
derived table is created in the FROM clause; if you need the same result again, you have to
include the whole definition for the derived table again.

Second, and relevant to this problem, a CTE can have a recursive definition, referencing
itself. That allows it to walk a hierarchy.

Listing 6 shows the structure of a query that uses a CTE. (It's worth noting that a single
query can have multiple CTEs; just separate them with commas.)

Listing 6. The definition for a CTE precedes the query that uses it.

WITH CTEAlias(Fieldl, Field2, ...)
AS

(
SELECT <fieldlist>

FROM <tables>

)

SELECT <main fieldlist>
FROM <main query tables>

The query inside the parentheses is the CTE; its alias is whatever you specify in the WITH
line. The WITH line also must contain a list of the fields in the CTE, though you don’t
indicate their types or sizes.

The main query follows the parentheses and presumably includes the CTE in its list of
tables and some of the CTE’s fields in the field list or the WHERE clause. In MySQL, if the
CTE is recursive, you must include the RECURSIVE keyword before alias for the CTE.

The query in Listing 7 uses a CTE to help calculate annual sales by track and is included in
the MySQL and SQLserver folders of materials for this session as SalesByTrackCTE.SQL.
You could write this query with a derived table, but this version seems more readable.

Listing 7. You can usually replace a derived table with a CTE. Here the CTE computes annual sales totals for
each track, and the main query adds the track name.

WITH csrSalesByTrack (TrackID, nYear, TotalSales)
AS
(SELECT TrackID, YEAR(InvoiceDate), SUM(UnitPrice * Quantity)
FROM Invoice
JOIN Invoiceline
ON Invoice.InvoiceId = Invoiceline.Invoiceld
GROUP BY TrackID, YEAR(InvoiceDate))

SELECT SBT.TrackID, Name, nYear, TotalSales
FROM csrSalesByTrack SBT
JOIN Track
ON SBT.TrackID = Track.TrackId
ORDER BY nYear, Name;

Copyright 2024, Tamar E. Granor Page 10 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

For a recursive CTE, you combine two queries with UNION ALL. The first query is an
"anchor"; it provides the starting record or records. The second query references the CTE
itself to drill down recursively.

A recursive CTE continues drilling down until the recursive portion returns no records.

Listing 8 shows the MySQL version of a query that produces the management hierarchy for
the employee whose EmployeelD is 7. (Just change the assignment to @iEmpID to specify a
different employee.) The query is included in the MySQL and SQLServer folders of the
materials for this session as EmpHierarchy.SQL.

Listing 8. To retrieve the management hierarchy for a Chinook employee, use a Common Table Expression.
USE Chinook;
SET @iEmpID = 7;

WITH RECURSIVE EmpHierarchy (
FirstName, LastName, ManagerID, EmpLevel)
AS

(
SELECT FirstName, LastName,

ReportsTo, 1 AS EmplLevel
FROM Employee
WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Employee.FirstName, Employee.LastName,
Employee.ReportsTo,
EmpHierarchy.EmpLevel + 1 AS EmpLevel
FROM Employee
JOIN EmpHierarchy
ON Employee.EmployeeID = EmpHierarchy.ManagerID

)

SELECT FirstName, LastName, EmpLevel
FROM EmpHierarchy;

The alias for the CTE here is EmpHierarchy. The anchor portion of the CTE selects the
specified person (WHERE EmployeelD = @iEmplID), including that person’s manager’s ID
(ReportsTo in the original data, ManagerID in the result) in the result and setting up a field
to track the level in the database.

The recursive portion of the query joins the Employee table to the EmpHierarchy table-in-
progress (that is, the CTE itself), matching the ManagerID from EmpHierarchy to
Employee.EmployeelD. It also increments the EmpLevel field, so that the first time it
executes, EmpLevel is 2, the second time, it’s 3, and so forth.

Once the CTE is complete, the main query pulls the desired information from it. The results
are the same as in the VFP example.

Copyright 2024, Tamar E. Granor Page 11 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

The SQL Server version of this query is identical to Listing 8, except that it omits the
RECURSIVE keyword.

Who does an employee manage?

The problem gets a little tougher, at least on the VFP side, when we want to put together a
list of all employees a particular person manages at all levels of the hierarchy. That is, not
only those they manage directly, but people who report to those people, and so on down
the line.

To make the results more meaningful, we want to include the name of the employee’s
direct manager in the results.

What makes this difficult in VFP is that at each level, we may (probably do) have multiple
employees. We need not only to add each to the result, but to check who each of them
manages. That means we need some way of keeping track of who we’ve checked and who
we haven't.

We use two cursors. One (MgrHierarchy) holds the results, while the other
(EmpsToProcess) holds the list of people to check. Listing 9 shows the code; it's called
MgrHierarchy.PRG in the VFP folder of the materials for this session.

Listing 9. Putting together the list of people a specified person manages directly or indirectly is harder than
climbing up the hierarchy.

* Start with a single employee and determine
* all the people that employee manages,

* directly or indirectly.

LPARAMETERS iEmpID

LOCAL iCurrentID, ilevel, cFirst, clast
LOCAL nCurRecNo, cMgrFirst, cMgrlLast

CREATE CURSOR MgrHierarchy ;
(cFirst C(15), clLast C(20), ilLevel I, ;
cMgrFirst C(15), cMgrLast C(15))

CREATE CURSOR EmpsToProcess ;
(EmployeeID I, cFirst C(15), clLast C(20), ;
iLevel I, cMgrFirst C(15), cMgrLast C(15))

INSERT INTO EmpsToProcess ;
SELECT m.iEmpID, FirstName, LastName, 1, "", "" ;
FROM Employee ;
WHERE EmployeeID = m.iEmpID

SELECT EmpsToProcess

SCAN
iCurrentID = EmpsToProcess.EmployeeID
iLevel = EmpsToProcess.ilevel
cFirst = EmpsToProcess.cFirst
cLast = EmpsToProcess.clLast

Copyright 2024, Tamar E. Granor Page 12 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

cMgrFirst =
cMgrLast =

EmpsToProcess.cMgrFirst
EmpsToProcess.cMgrlLast

* Insert this record into result
INSERT INTO MgrHierarchy ;
VALUES (m.cFirst, m.cLast, m.ilLevel, m.cMgrFirst, m.cMgrlLast)

* Grab the current record pointer
nCurRecNo = RECNO("EmpsToProcess")

INSERT INTO EmpsToProcess ;
SELECT EmployeeID, FirstName, LastName, m.ilLevel + 1, m.cFirst, m.clLast ;
FROM Employee ;
WHERE ReportsTo = m.iCurrentID

* Restore record pointer
GO m.nCurRecNo IN EmpsToProcess
ENDSCAN

SELECT MgrHierarchy

To kick the process off, we add a single record to EmpsToProcess, with information about
the specified employee. Then, we loop through EmpsToProcess, handling one employee at
a time. We insert a record into MgrHierarchy for that employee, and then we add records to
EmpsToProcess for everyone directly managed by the employee we’re now processing.

The most interesting bit of this code is that the SCAN loop has no problem with the cursor
we're scanning growing as we go. We just have to keep track of the record pointer, and
after adding records, move it back to the record we're currently processing.

Figure 4 shows the result cursor when you pass 1 as the employee ID.

Marhierarchy E=H EEN =<7
Cfirst Clast Ilevel Cmgrfirst Cmgrlast ~
Andrew :Adams 1
_, Edwards 2 Andrew Adams |
||Michael Mitchell 2 {Andrew Adams
Jane Peacock 3iNancy Edwards
Margaret Park 3iNancy Edwards
Steve Johnson 3iNancy Edwards
Robert :(King 3iMichael Mitchell
Laura Callahan 3iMichael i{Mitchell
L
I«

Figure 4. When you specify an EmployeelD of 1, you get all the Chinook employees.

In fact, you can do this with a single cursor that represents both the results and the list of
people yet to check, but doing so makes the code a little confusing.

Copyright 2024, Tamar E. Granor Page 13 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

In the SQL engines, solving this problem is no harder than solving the upward hierarchy.
Again, we use a CTE, and all that really changes is the join condition in the recursive part of
the CTE. (Because we want the direct manager’s name, the field list is slightly different, as
well). Listing 10 shows the SQL Server version of the query (MgrHierarchy.SQL in the
relevant folders of the materials for this session), along with a variable declaration to
indicate which employee we want to start with; Figure 5 shows the results for this
example; the content is identical to the VFP results.

Listing 10. Walking down the hierarchy of employees is no harder in SQL Server than climbing up.
USE Chinook;
DECLARE @iEmpID INT = 1;

WITH EmpHierarchy
(FirstName, LastName, EmployeeID, EmpLevel, MgrFirst, MgrLast)
AS
(
SELECT FirstName, LastName,
EmployeeID, 1 AS EmplLevel,
CAST('"' AS NVARCHAR(20)) AS MgrFirst,
CAST('' AS NVARCHAR(20)) AS MgrLast
FROM Employee
WHERE EmployeeID = @iEmpID
UNION ALL
SELECT Employee.FirstName, Employee.LastName,
Employee.EmployeelD,
EmpHierarchy.EmpLevel + 1 AS EmplLevel,
EmpHierarchy.FirstName AS MgrFirst,
EmpHierarchy.LastName AS MgrLast
FROM Employee
JOIN EmpHierarchy
ON Employee.ReportsTo = EmpHierarchy.EmployeeID
)

SELECT FirstName, LastName, EmpLevel,
MgrFirst, MgrLast
FROM EmpHierarchy

FirstMame LastMame Emplewel MarFirst Marlast

1 Bndrew © Adams 1

2 Nanc'_.' Edwards 2 Andrew Adams

3 Michael Mitchell 2 Andrew Adams
4 Fobert King 3 Michael Michell
5 Laura Callahan 3 Michael Michell
& Jane Peacock 3 Mancy Edwards
7 Margaret Park 3 Mancy Edwards
a3 Steve Johnzon 3 Mancy Edwards

Figure 5. These are the people managed by Andrew Adams, whose EmployeelD is 1.

Copyright 2024, Tamar E. Granor Page 14 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

As in the previous case, the MySQL query is identical to the SQL Server query, except for the
inclusion of the RECURSIVE keyword before the EmpHierarchy alias for the CTE.

Using the HierarchylD type

Starting in SQL Server 2008, there’s another new way to handle this kind of hierarchy. A
new data type called HierarchyID encodes the path to any node in a hierarchy into a single
field; a set of methods for the data type make both maintaining and navigating
straightforward. (The idea of a data type with methods is unusual. Think of the data type as
essentially a class that you can use as a field.)

Versions of the example AdventureWorks database starting with 2008 use the HierarchyID
type to handle the management hierarchy. In addition, AdventureWorks is highly
normalized. You need to look at two tables to get all the information about an employee:
Employee and Person. Each employee has a BusinessEntityID, which is used to link the
tables.

HierarchylD essentially creates a string that shows the path from the root (top) of the
hierarchy to a particular record. The root node is indicated as "/"; then, at each level, a
number indicates which child of the preceding node is in this node’s hierarchy. So, for
example, a hierachyID of "/4/3/" means that the node is descended from the fourth child of
the root node and is the third child of that child. However, HierarchylDs are actually stored
in a binary string created from the plain text version.

The HierarchyID type has a set of methods that allow you to easily navigate the hierarchy.
First, the ToString method converts the encoded hierarchy ID to a string in the form shown
above. Listing 11 (ShowHierarchyID.SQL in the SQLServer folder of the materials for this
session) shows a query to extract the name and hierarchy ID, both in encoded and plain
text form, of the AdventureWorks employees; Figure 6 shows a portion of the result.

Listing 11.The ToString method of the HierarchyID type converts the hierarchy ID into a human-readable
form.

SELECT Person.[BusinessEntityID]
,[OrganizationNode]
,[OrganizationNode].ToString() AS Hierarchy
,[OrganizationLevel]
, FirstName
, LastName
FROM [HumanResources].[Employee]
JOIN Person.Person
ON Employee.BusinessEntityID = Person.BusinessEntityID

Copyright 2024, Tamar E. Granor Page 15 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

BusinessEntitylD OrganizationMode Hierarchy — Organizationlevel FirstMame — LastMName
: ‘I NULL NULL NULL o S5 e
T T— 058 Py 1 Tur oty
3 16 (=68 f2f 1 David Bradley
4 25 (78 i3 1 James Hamilton
5 234 (34 4y 1 Laura Norman
6 263 (x8C /B 1 Jean Trenary
7 273 (b5 es 1 Brian Welcker
3 3 (e 5ACD AV v 2 Roberto Tamburello
9 7 (BACD rlavy 2 Kevin Brown
10 18 (x&B40 F2r2 2 John Wood
11 15 (x&BCO F203 2 Mary Dempsey
12 20 (e 6C20 F24/ 2 Wanida Benshoof
13 A (= GCE0 F2ens 2 Temy Eminhizer

Figure 6. The hierarchy column here shows the text version of the OrganizationNode column.

To move through the hierarchy, we use the GetAncestor method. As you'd expect,
GetAncestor returns an ancestor of the node you apply it to. A parameter indicates how
many levels up the hierarchy to go, so GetAncestor(1) returns the parent of the node.

That's actually all we need to retrieve the management hierarchy for a particular employee.
As in the earlier example, we use a CTE to handle the recursive requirement. Listing 12
shows the query; it’s included in the SQLServer folder of the materials for this session as
EmpHierarchyWithHierarchyID.SQL.

Listing 12. Retrieving the management hierarchy for a given employee when using the HierarchyID data type
isn’t much different from doing it with a "reports to" field.
DECLARE @iEmpID INT = 40;
WITH EmpHierarchy (FirstName, LastName, OrganizationNode, EmpLevel)
AS
(
SELECT Person.FirstName, Person.LastName,
Employee.OrganizationNode, 1 AS EmplLevel
FROM Person.Person
JOIN HumanResources.Employee
ON Employee.BusinessEntityID = Person.BusinessEntityID
WHERE Employee.BusinessEntityID = @iEmpID
UNION ALL
SELECT Person.FirstName, Person.LastName,
Employee.OrganizationNode, EmpHierarchy.EmpLevel + 1 AS EmpLevel
FROM Person.Person
JOIN HumanResources.Employee
ON Employee.BusinesstEntityID =
JOIN EmpHierarchy
ON Employee.OrganizationNode =

Person.BusinessEntityID

EmpHierarchy.OrganizationNode.GetAncestor(1)

Copyright 2024, Tamar E. Granor Page 16 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

SELECT FirstName, LastName, EmpLevel
FROM EmpHierarchy

The big difference between this query and the earlier query is in the join between
Employee and EmpHierarchy. Rather than matching fields directly, we call GetAncestor to
retrieve the hierarchy for a node’s parent and compare that to the Employee table’s
OrganizationNode field.

As in the earlier examples, finding everyone an employee manages uses a very similar
query, but in the join condition between Employee and EmpHierarchy, we apply
GetAncestor to the field from Employee. Listing 13 (MgrHierarchyWithHierarchyID.SQL in
the SQLServer folder of the materials for this session) shows the code. Figure 7 shows the
result.

Listing 13. To find everyone an individual manages using HierarchyID, just change the direction of the join
between Employee and EmpHierarchy.

DECLARE @iEmpID INT = 3;

WITH EmpHierarchy
(FirstName, LastName, BusinessEntityID,
EmpLevel, MgrFirst, MgrLast, OrgNode)
AS
(
SELECT Person.FirstName, Person.LastName,
Employee.BusinessEntityID, 1 AS EmplLevel,
CAST('' AS NVARCHAR(50)) AS MgrFirst,
CAST('' AS NVARCHAR(50)) AS MgrLast,
OrganizationNode AS OrgNode
FROM Person.Person
JOIN HumanResources.Employee
ON Employee.BusinessEntityID = Person.BusinessEntityID
WHERE Employee.BusinessEntityID = @iEmpID
UNION ALL
SELECT Person.FirstName, Person.LastName,
Employee.BusinessEntityID,
EmpHierarchy.EmpLevel + 1 AS EmplLevel,
EmpHierarchy.FirstName AS MgrFirst,
EmpHierarchy.LastName AS MgrLast,
OrganizationNode AS OrgNode
FROM Person.Person
JOIN HumanResources.Employee
ON Employee.BusinessEntityID = Person.BusinessEntityID
JOIN EmpHierarchy
ON Employee.OrganizationNode.GetAncestor(1l) = EmpHierarchy.OrgNode

)

SELECT FirstName, LastName, EmpLevel, MgrFirst, MgrlLast
FROM EmpHierarchy

Copyright 2024, Tamar E. Granor Page 17 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

FistMame LastMame Emplevel MagrFirst Marlast

1 Robero . Tamburello 1

2 Hu:ul:u Walters 2 Roberto Tamburello
3 Gail Erickson 2 Roberto Tamburello
4 Jossef Goldbeng 2 Roberto Tamburello
4] Chlan Miller 2 Roberto Tamburello
& Owidiu Cracium 2 Roberto Tamburello
7 Michael Sullivan 2 Roberte Tamburello
a Sharon Salavaria 2 Roberto Tamburello
9 Thiemy O'Hers 3 Chvidiu Cracium

10 Janice Galvin 3 Orvidiu Cracium

11 Dliane Margheim 3 Chlan Miller

12 Gigi Matthew 3 Dhylan Miller

13 Michael Raheem 3 Chlan Miller

Figure 7. The query in Listing 13 produces this result.

Setting up HierarchylDs

Populating a HierarchyID field turns out to be simple. You can specify the plain text version
and SQL Server will handle encoding it. You can also use the GetRoot and GetDescendant
methods to populate the field.

GetDescendant is particularly useful for inserting a child of an existing record. You call the
GetDescendant method of the parent record, passing parameters that indicate where the
new record goes among the children of the parent. A complete explanation of the method is
beyond the scope of this paper, but Listing 14 shows code that creates a temporary table
and adds a few records, and then shows the results. This code is included in the SQLServer
folder of the materials for this session as CreateHierarchy.SQL.

Listing 14. You can specify the hierarchylID value directly or use the GetRoot and GetDescendant methods.

CREATE TABLE #temp
(orgHier HIERARCHYID, NodeName CHAR(20))

INSERT INTO #temp
(orgHier, NodeName)
VALUES ('/', 'Root'))

DECLARE @Root HIERARCHYID,
@curNode HIERARCHYID
SELECT @Root = hierarchyID::GetRoot()

INSERT INTO #temp
(orgHier, NodeName)
VALUES (@Root.GetDescendant(NULL, NULL),
"First child')

SELECT @curNode = MAX(orgHier)
FROM #temp

Copyright 2024, Tamar E. Granor Page 18 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

WHERE orgHier.GetAncestor(l) = @Root

INSERT INTO #temp
(orgHier, NodeName)
VALUES (@curNode.GetDescendant(NULL, NULL),
'First grandchild")

INSERT INTO #temp
(orgHier, NodeName)
VALUES (@Root.GetDescendant(@curNode, NULL),
‘Second child"')

SELECT orgHier, orgHier.ToString(),
NodeName

FROM #temp

DROP TABLE #temp

You'll find a good tutorial on the HierarchyID type, including a discussion of the methods, at
http://tinyurl.com/n6kk6jm.

What about VFP and MySQL?

Obviously, VFP has no analogue of the HierarchyID data type. However, you can create your
own. Marcia Akins described an approach to doing so in a paper titled "Modeling
Hierachies" back in 2005. Unfortunately, it’s no longer available online.

Of course, a home-grown version won'’t include the methods that SQL Server’s HierarchyID
type comes with. You'll have to write your own code to handle look-ups and insertions.

MySQL has no mechanism equivalent to HierarchyID.

Get the top N from each group

All three versions of SQL include the TOP n clause, which allows you to include in the result
only the first n records that match a query’s filter conditions. But TOP n doesn’t work when
what you really want is the TOP n for each group in the query.

Suppose a company wants to know its top five salespeople for each year in some period or
the top 3 students in each class. In VFP, you need to combine SQL with Xbase code or use a
trick to get the desired results. With SQL Server and MySQL, you can do it with a single
query. The example we’ll use here is to find the five longest tracks in each genre in the
Chinook data.

The VFP solution

Collecting the basic data you need to solve this problem is straightforward. Listing 15
shows a query that collects the track and genre for each track; Figure 8 shows part of the
results.

Copyright 2024, Tamar E. Granor Page 19 of 47

http://tinyurl.com/n6kk6jm

Go Beyond VFP's SQL with SQL Server and MySQL

Listing 15. Getting the track length and genre is easy in VFP.

SELECT Track.Name AS TrackName, ;
Milliseconds AS TrackLength, ;
Genre.Name AS GenreName ;

FROM Track ;
JOIN Genre ;
ON Track.Genreld = Genre.Genreld ;
ORDER BY GenreName, TrackLength DESC ;
INTO CURSOR csrGenrelLengthOrder

M Csrgenrelengthorder EI@

Trackname Tracklength Genrename &
TlFour walled world 414474 :plternative
Say Hello 2 Heaven 384497 Alternative
Times of Trouble 342539 Alternative
Call Me a Dog 304458 Alternative
Show Me How to Live (Live at the Quart Festival) 301974 Alternative
Moth 298049 Alternative
Band Members Discuss Tracks from "Revelations" 294294 plternative
Billie Jean 281401 Alternative
Shape of Things to Come 274597 plternative
Disappearing Act 273320 Alternative
Silence the Voices 267376 Alternative
Wide Awake 266308 Alternative
Sound of a Gun 260154 :plternative

I(Mo Em 223 emene S AC A ML et 5 v

Figure 8. The query in Listing 15 extracts the length and genre of each track, and organizes it by genre.

However, when you want to keep only the top five in each genre, you need to either
combine SQL code with some Xbase code or use a trick that can result in a significant
slowdown with large datasets.

SQL plus Xbase

The mixed solution is easier to follow, so let’s start with that one. The idea is to first select
the raw data needed, in this case, the length and genre of each track. Then we loop through
on the grouping field, and select the top n (five, in this case) in each group and put them
into a cursor. Listing 16 (TopnTrackLengthByGenre-Loop.PRG in the VFP folder of the
materials for this session) shows the code; Figure 9 shows partial results. (Part of the
name of a few tracks is cut off in the figure.)

Listing 16. One way to find the top n in each group is to collect the data, then loop through it by group.

CREATE CURSOR csrGenreRankByTrackLength ;
(nRank I, GenreName C(120), TrackName C(200), TrackLength I)

SELECT Track.Name AS TrackName, ;
Milliseconds AS TrackLength, ;
Genre.Name AS GenreName ;

FROM Track ;
JOIN Genre ;
ON Track.GenrelId = Genre.Genreld ;
ORDER BY GenreName, TrackLength DESC ;

Copyright 2024, Tamar E. Granor Page 20 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

INTO CURSOR csrGenrelLengthOrder

SELECT DISTINCT GenreName ;
FROM csrGenreLengthOrder ;
ORDER BY GenreName ;

INTO CURSOR csrGenres

LOCAL cGenreName

SCAN
cGenreName = csrGenres.GenreName
INSERT INTO csrGenreRankByTrackLength ;
SELECT RECNO() AS nRank, * ;
FROM (SELECT TOP 5 GenreName, TrackName, TrackLength ;
FROM csrGenreLengthOrder ;
WHERE GenreName == m.cGenreName ;
ORDER BY TrackLength DESC) csrOneGenre
ENDSCAN

SELECT csrGenreRankByTrackLength

Csrgenrerankbytracklength

Nrank Genrename Trackname

B LAlternative Eeach Down

I 2iAlternative Four Walled world
3iAlternative Say Hello 2 Heaven
4:Alternative Times of Trouble
5iAlternative Call Me a Dog
liAlternative & Punk Homecoming / The Death 0f St. Jimmy / East 12th St. / Nobody L:
2iAlternative & Punk Jesus Of Suburbia / City Of The Damned / I Don't Care / Dearly
3iAlternative & PunkZXZ E O Z
4 Alternative & Punk Sir Psycho Sexy
5 Alternative & Punk The Real Thing
1:Blues Talkin' 'Bout Women Obviously
2 Blues Riviera Paradise
3:Blues Title Song
4:Blues 0ld Love
5 Blues Wiser Time
1:Bossa Nova Samba Da Béncdo
2!Bossa Nova Pot-Pourri N.° 4
3 :Bossa Nova Minha Namorada
4:Bossa Nova Como E Duro Trabalhar
5iBossa Nova Pot-Pourri N.° 5
1:Cclassical Adagio for Strings from the String Quartet, op. 11

Figure 9. The query in Listing 16 produces these results.

After creating a cursor to hold the results, the first query is just Listing 15. Next, we grab a
list of genres. Finally, we loop through the cursor of genres and, for each, grab the five
longest tracks and put them into the result cursor. The INSERT command uses a subquery
to grab the five longest tracks, and then uses RECNO() to add the rank (position in the list)
for each record.

You can consolidate this version a little by turning the first query into a derived table in the
query inside the INSERT command. Listing 17 (TopnTrackLengthByGenre-Loop2.PRG in

Copyright 2024, Tamar E. Granor Page 21 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

the VFP folder of the materials for this session) shows the revised version. Note that you
get the list of genres directly from the Genre table in this version. This version, of course,
gives the same results.

Listing 17. The code in Listing 16 can be reworked to use a derived table to grab the data for each genre.

CREATE CURSOR csrGenreRankByTrackLength ;
(nRank I, GenreName C(120), TrackName C(200), TrackLength I)

SELECT DISTINCT Name as GenreName ;
FROM Genre ;
ORDER BY Name ;
INTO CURSOR csrGenres

LOCAL cGenreName

SCAN
cGenreName = csrGenres.GenreName
INSERT INTO csrGenreRankByTrackLength ;
SELECT RECNO() AS nRank, * ;
FROM (SELECT TOP 5 Genre.Name as GenreName, ;
Track.Name as TrackName, ;
Milliseconds AS TracklLength ;
FROM Track ;
JOIN Genre ;
ON Track.Genreld = Genre.Genreld ;
WHERE Genre.Name == m.cGenreName ;
ORDER BY TrackLength DESC) csrOneGenre
ENDSCAN

SELECT csrGenreRankByTrackLength

SQL-only

The alternative VFP solution uses only SQL commands but relies on a trick of sorts. Like the
mixed solution, it starts with a query to collect the basic data needed. It then joins that data
to itself in a way that results in multiple records for each genre/length combination and
uses HAVING to keep only those that represent the top n records. Then, it sorts the data
into the right order and finally, it adds the rank. Listing 18 (TopnTrackLengthByGenre-
Trick.prg in the VFP folder of the materials for this session) shows the code.

Listing 18. This solution uses only SQL but requires a tricky join condition.

SELECT Track.Name AS TrackName, ;
Milliseconds AS TrackLength, ;
Genre.Name AS GenreName ;

FROM Track ;
JOIN Genre ;
ON Track.GenrelId = Genre.Genreld ;
INTO CURSOR csrGenrelLengthOrder

SELECT * FROM ;
(SELECT GLO1.GenreName, GLOl1l.TrackName, GLO1l.TrackLength ;

Copyright 2024, Tamar E. Granor Page 22 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

FROM csrGenreLengthOrder GLO1 ;
JOIN csrGenreLengthOrder GLO2 ;
ON GLOl.GenreName == GLO2.GenreName ;
AND GLO1.TrackLength <= GLO2.TrackLength ;
GROUP BY 1, 2, 3 ;
HAVING COUNT(*) <= 5) csrTop5 ;
ORDER BY GenreName, TrackLength DESC ;
INTO CURSOR csrGenreRankByTrackLength

The first query here is just Listing 15. The key portion of this approach is the derived table
in the second query, in particular, the join condition between the two instances of
csrGenreLengthOrder, shown in Listing 19. Records are matched up first by having the
same genre and then by having track length in the second instance be the same or more
than track length in the first instance. This results in a single record for the longest track
from that genre, two records for the second longest track in the genre, and so on.

Listing 19. The key to this solution is the unorthodox join condition between two instances of the same table.

FROM csrGenreLengthOrder GLO1 ;
JOIN csrGenreLengthOrder GLO2 ;
ON GLOl1l.GenreName == GLO2.GenreName ;
AND GLO1.TrackLength <= GLO2.TrackLength

The GROUP BY and HAVING clauses then combine all the records for a given genre and
length and keeps only those where the number of records in the intermediate result is five
or fewer (that is, where the count of records in the group is five or less), providing the five
longest tracks for each genre. (It's worth noting that this approach will fail if two tracks in
the same genre are exactly the same length.)

To make more sense of this solution, first consider the query in Listing 20 (included in the
materials for this session as TopNTrackLengthByGenreBeforeGrouping.prg). It assumes
we’ve already run the query to create the csrGenreLengthOrder cursor. It shows the results
from the derived table in Listing 18 before the GROUP BY is applied (plus a couple of
additional fields). In the partial results shown in Figure 10, you can see one record for
Reach Down, two for Four Walled World, three for Say Hello 2 Heaven and so forth. The
added columns (Track2 and TrackLen2) show which row in GLOZ produced this result row.
So, for Reach Down, the only row that met the conditions was the one for Reach Down. For
Four Walled World, both Reach Down and itself met the conditions of length the same or
more than its own.

Listing 20. This query demonstrates the intermediate results for the derived table in Listing 18.

SELECT GLOl1.GenreName, GLO1l.TrackName, GLOl.TrackLength, ;

GLO2.TrackName, GLO2.TrackLength ;

FROM csrGenreLengthOrder GLO1 ;

JOIN csrGenreLengthOrder GLO2 ;

ON GLOl.GenreName == GLO2.GenreName ;
AND GLO1.TrackLength <= GLO2.TrackLength ;

ORDER BY GLO1.GenreName, GLOl.TrackLength DESC ;

INTO CURSOR csriIntermediate

Copyright 2024, Tamar E. Granor Page 23 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

L IS IS ans — ey m

Genrename Trackl Tracklenl Track2 Tracklen2
_. Reach Down 672773 Reach Down 672773
[lalternative Four walled World 414474 Reach Down 672773

Alternative Four Walled World 414474 Four Walled world 414474

Alternative Say Hello 2 Heaven 384497 Say Hello 2 Heaven 384497

Alternative Say Hello 2 Heaven 384497 Reach Down 672773

Alternative Say Hello 2 Heaven 384497 Four Walled world 414474

Alternative Times of Trouble 342539 Say Hello 2 Heaven 384497

Llternative Times of Trouble 342539 Reach Down 672773

Alternative Times of Trouble 342539 Times of Trouble 342539

Alternative Times of Trouble 342539 Four Walled World 414474

Alternative Call Me a Dog 304458 Say Hello 2 Heaven 384497

Alternative Call Me a Dog 304458 Reach Down 672773

Alternative Call Me a Dog 304458 Call Me a Dog 304458

Alternative Call Me a Dog 304458 Times of Trouble 342539

Alternative Call Me a Dog 304458 Four Walled World 414474

Alternative Show Me How to Live (Live at 301974 say Hello 2 Heaven 384497

Alternative Show Me How to Live (Live at 301974 Reach Down 672773

BAlternative Show Me How to Live (Live at 301974 . Call Me a Dog 304458

Blternative Show Me How to Live (Live at 301974 Times of Trouble 342539

Alternative Show Me How to Live (Live at 301974 Four Walled wWorld 414474

ALlternative Show Me How to Live (Live at 301974 Show Me How to Live (Live at 301974

Alternative Moth 298049 say Hello 2 Heaven 384497

Alternative Moth 293049 Reach Down 672773

Alternative Moth 298049 Call Me a Dog 304458

Alternative Moth 298049 Times of Trouble 342539

Alternative Moth 293049 Four Walled world 414474

Alternativae Math 080440 i Math 208049

Figure 10. The query in Listing 20 unfolds the data that’s grouped in the derived table.

In addition to the issue of records that have same value for the ordering field, the main
problem with this approach is that, as the size of the original data increases, it can get
bogged down. Also, unlike the combined solution, this solution doesn’t number the tracks
in each genre. So while this solution has a certain elegance, in the long run, a SQL plus
Xbase solution is probably a better choice.

Incidentally, this example (the one in Listing 18) shows where CTEs (common table
expressions, explained earlier in this paper) would be useful in VFP’s SQL. We can'’t easily
combine the two queries into one because the second query uses two instances of the
csrGenreLengthOrder. If VFP supported CTEs, we could make the query that creates
csrGenreLengthOrder into a CTE, and then use it twice in the main query.

The SQL Server and MySQL solution

Solving the top n by group problem in the SQL engines uses a couple of CTEs, but also uses
another construct that’s not available in VFP’s version of SQL.

The OVER clause lets you apply a function to all or part of a result set; it's used in the field
list. There are several variations, but the basic structure is shown in Listing 21.

Listing 21. The OVER clause lets you apply a function to all or some of the records in a query.

<function> OVER (<grouping and/or ordering>)

Copyright 2024, Tamar E. Granor Page 24 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

OVER lets you rank records, as well as applying aggregates to individual items in the field
list. In SQL Server 2012 and later, OVER has additional features that let you compute
complicated aggregates such as running totals and moving averages.

For the top n by group problem, we want to rank records within a group and then keep the
top n. To do that, we can use the RANK() function, which, as its name suggests, returns the

rank (position) of a record within a group (or within the entire result set, if no grouping is

specified).

For example, Listing 22 (included in the appropriate folders of the materials for this
session as RankGenreSold.sql) shows a query that ranks genres in Chinook by how many
tracks in those genres were sold. Here, the data is ordered by number sold (SUM(Quantity)
and then RANK() is applied to provide the position of each record. Figure 11 shows partial
results.

Listing 22. Using RANK() with OVER lets you number records.

SELECT RANK() OVER (ORDER BY SUM(Quantity) DESC) AS nRank,
Genre.Name,
SUM(Quantity) AS NumSold
FROM Genre
JOIN Track
ON Genre.GenrelD
JOIN Invoiceline
ON Track.TrackID = InvoicelLine.TrackID
GROUP BY Genre.Name
ORDER BY nRank

Track.GenreID

nRank Mame MumSol
po|1 Rock 835
2 Latin 386
3 Metal 2649
4 Alternative & Punk 244
5 Jazz 30
] Blues 61
7 TV Shows 47
] RE&BSoul 41
] Classical 41
10 Reggae 30
11 Drama 29

4" M e

Figure 11. The query in Listing 22 applies a rank to each genre by tracks sold.

OVER can also accept the ROW_NUMBER() function, which is the same as RANK(), except
that RANK() knows about ties and ROW_NUMBER doesn’t. So in Figure 11, R&B/Soul and
Classical both show 41 tracks sold. Both have a rank of 8, and rank 9 is skipped, assigning
Reggae rank 10. If we’d used ROW_NUMBER(), R&B/Soul would be 8 and Classical would
be 9. Listing 23 (RowNumberGenreSold.SQL in the appropriate folders in the materials for

Copyright 2024, Tamar E. Granor Page 25 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

this session) shows the same query using ROW_NUMBER() instead of RANK(); Figure 12
shows partial results.

Listing 23. Unlike RANK(), ROW_NUMBER() isn’t aware of ties, and assigns them different values.

SELECT ROW_NUMBER() OVER (ORDER BY SUM(Quantity) DESC) AS nRank,
Genre.Name,
SUM(Quantity) AS NumSold
FROM Genre
JOIN Track
ON Genre.GenrelID
JOIN Invoiceline
ON Track.TrackID
GROUP BY Genre.Name
ORDER BY nRank

Track.GenreID

InvoicelLine.TrackID

nRank MName MumSeld
1 : Rock 835
2 277 Latin 186
3 3 Metal 264
4 4 AMtemative & Punk 244
b b Jazz a0
6 6 Blues 61
7 7 TV Shows 7
g g R&B/Soul 41
9 9 Classical 41
10 10 Regaae 30
1A 11 Drama 29

Figure 12. Using ROW_NUMBER() assigns the different ranks to each genre, even if the same number were
sold.

You can’t say that either ROW_NUMBER() or RANK() is right; which one you want depends
on the situation. In fact, there’s a third related function, DENSE_RANK() that behaves like
RANK(), giving ties the same value, but then continues numbering in order. That is, if we
used DENSE_RANK() in this example, Reggae would have a rank of 9, rather than 10.

Partitioning with OVER

In addition to specifying ordering, OVER also allows us to divide the data into groups
before applying the function, using the PARTITION BY clause. The query in Listing 24
(included in the relevant folders of the materials for this session as
TrackLengthByGenre.sql) assigns ranks based on track length within each genre using both
PARTITION BY and ORDER BY. Figure 13 shows partial results (from the middle).

Listing 24. Combining PARTITION BY and ORDER BY in the OVER clause lets you apply ranks within a group.

SELECT RANK() OVER (PARTITION BY Track.GenreID ORDER BY Milliseconds DESC) AS nRank,
Track.Name AS TrackName,
Milliseconds AS TrackLength,
Genre.Name AS GenreName

Copyright 2024, Tamar E. Granor Page 26 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

FROM Track
JOIN Genre
ON Track.Genreld = Genre.Genreld
ORDER BY GenreName, nRank;

nRank TrackMame TrackLength GenreMame
40 Levada do Amor (Ailowviu) 190053 Fop

41 Tapa Aqui, Descobre Ali 188630 Fop

42 Gimme Some Truth 187546 Pop

43 (There Is) Mo Greater Love (Tea Licks) 167933 Pop

44 Latinha de Cerveja 166687 Pop

45 Ch, My Love 159473 Fop

46 Isolation 156059 Pop

47 Grow Old With Me 149053 Fop

43 I Heard Love Is Blind 129666 Fop

1 Rehab (Hot Chip Remix) 413293 R&E /Soul
2 Black Capricorn Day 341629 R&B/Soul
3 Destitute Ilusions 340218 R&B /Soul
4 I'm Real 334236 RE&B/Soul
5 Canned Heat 331964 R&B Soul
] Get Up (I Feel Like Being A) Sex Machine 316551 RE&B /Soul
7 SUpErsonic 315872 RE&B/Soul
a Ego Tripping Out 314514 R&B/Soul

Figure 13. Here, tracks are numbered within their genre, based on their length.

This example should provide a hint as to how we’ll solve the top n by group problem, since
we now have a way to number things by group. All we need to do is filter so we only keep
those whose rank within the group is in the range of interest. However, it’s not possible to
filter on the computed field nRank in the same query. Instead, we turn that query into a
CTE and filter in the main query, as in Listing 25 (TopNTrackLengthByGenre.sql in the
appropriate folders of the materials for this session).

Listing 25. Once we have the rank for an item within its group, we just need to filter to get the top n items by
group.

WITH RankByTrackLength (nRank, TrackName, TrackLength, GenreName)
AS
(SELECT RANK() OVER (PARTITION BY Track.GenreID ORDER BY Milliseconds DESC) AS nRank,
Track.Name AS TrackName,
Milliseconds AS TrackLength,
Genre.Name AS GenreName
FROM Track
JOIN Genre
ON Track.Genreld = Genre.Genreld)

SELECT *
FROM RankByTrackLength
WHERE nRank <= 5
ORDER BY GenreName, nRank;

Copyright 2024, Tamar E. Granor Page 27 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

Figure 14 shows part of the result. Note that there’s only one record for Opera because
that genre has only one track.

nRank TrackMame Tracklength GenreMame

66 1 Rime of the Ancient Mariner 216509 Metal

67 2 Rime Of The Ancient Mariner 739472 Metal

68 3 Mercyful Fate 671712 Metal

65 4 Sign Of The Cross 645116 Metal
5 Sleeping Village 644571 Metal

Fil 1 Die Zaubedlote, K.620: "Der Hole Rache Kochtin ... 174813 COpera
721 Amy Amy Amy (Outro) 663426 Pap
732 You Sent Me Fying / Chemy 405506 Pap

4 3 In My Bed 315560 Pop
B4 Help Yourself 3003834 Pop

& 5 Mother 287740 Pop
7o Rehab (Haot Chip Remix) 418293 R&B/Soul
s 2 Black Capricom Day 1625 Ré&B.Soul

Figure 14. The query in Listing 25 provides the five longest tracks in each genre. If there were ties, it could
produce more than five results for a given genre.

The OVER clause wasn’t added to MySQL until version 8. The materials for this session
include a solution to this problem that works in earlier versions of MySQL; it’s
TopNTrackLengthByGenrePre8.SQL in the MySQL folder.

The OVER clause has other uses, such as helping to de-dupe a list. Since SQL Server 2012
(and in MySQL 8), it can apply the function to a group of records based not only on an
expression but based on position within a group. I've written about everything you can do
with OVER: see
http://tomorrowssolutionsllc.com/ConferenceSessions/Going%200VER%20and%?20abov
e%20with%20SQL.pdf.

Summarize aggregated data

As earlier sections of this paper show, SQL SELECT’s GROUP BY clause makes it easy to
aggregate data in a query. Just include the fields that specify the groups and some fields
using the aggregate functions (COUNT, SUM, AVG, MIN, MAX in VFP; SQL Server and MySQL
have those and some more).

For example, the query in Listing 26 (SalesByMonthArtistAlbum.PRG in the VFP folder of
the materials for this session) fills a cursor with total sales (both number of tracks sold and
income) for each album/artist combination for each month; Figure 15 shows partial
results.

Listing 26. This query computes total sales for each combination of genre, year and month.

SELECT Artist.Name as ArtistName, ;
Album.Title AS AlbumTitle, ;
YEAR(InvoiceDate) as SaleYear, ;

Copyright 2024, Tamar E. Granor Page 28 of 47

http://tomorrowssolutionsllc.com/ConferenceSessions/Going%20OVER%20and%20above%20with%20SQL.pdf
http://tomorrowssolutionsllc.com/ConferenceSessions/Going%20OVER%20and%20above%20with%20SQL.pdf

Go Beyond VFP's SQL with SQL Server and MySQL

MONTH(InvoiceDate) as SaleMonth, ;
SUM(Quantity) AS TracksSold, ;
SUM(Quantity * Invoiceline.UnitPrice) AS Total ;
FROM Invoice ;
JOIN Invoiceline ;
ON Invoice.InvoiceID = Invoiceline.InvoicelID ;
JOIN Track ;
ON InvoicelLine.TrackID = Track.TrackID ;
JOIN Album ;
ON Track.AlbumID = Album.AlbumID ;
JOIN Artist ;
ON Album.ArtistID = Artist.ArtistID ;
GROUP BY 1, 2, 3, 4 ;
ORDER BY 1, 2, 3, 4 ;
INTO CURSOR csrSales

Artistname Albumtitle Saleyear Salemonth Trackssold Total
BackBeat BackBeat Soundtrack 2011 7 1 0.99
BackBeat BackBeat Soundtrack 2012 11 2 1.98
Battlestar Galactica Battlestar Galactica, Season 3 2010 1 4 7.96
Battlestar Galactica Battlestar Galactica, Season 3 2011 4 3 5.97
Battlestar Galactica Battlestar Galactica, Season 3 2012 7 2 3.98
Battlestar Galactica Battlestar Galactica, Season 3 2012 8 1 1.99
Battlestar Galactica Battlestar Galactica, Season 3 2013 11 2 3.98
Battlestar Galactica (Classic) Battlestar Galactica (Classic), Season 2010 2 2 3.98
Battlestar Galactica (Classic) Battlestar Galactica (Classic), Season 2010 3 2 3.98
Battlestar Galactica (Classic) Battlestar Galactica (Classic), Season 2011 [9 17.91
Battlestar Galactica (Classic) 2012 9 4 7.96
Battlestar Galactica (Classic) Battlestar Galactica (Classic), Season 2012 10 1 1.99
Berliner Philharmoniker & Hans RosjSibelius: Finlandia 2012 10 1 0.99
Berliner Philharmoniker & Herbert Grieg: Peer Gynt Suites & Sibelius: Pe 2012 10 1 0.99
Berliner Philharmoniker & Herbert Mozart: Symphonies Nos. 40 & 41 2012 10 1 0.99
Billy Cobham The Best Of Billy Cobham 2009 1 1 0.99
Billv Cobham The Best Of Billv Cobham 2010 4 1 0.99

Figure 15. The query in Listing 26 computes the sales for each artist/album combination in each month.

You can do the same thing in the SQL databases, though the GROUP BY clause is more
informative there because you can list fields that use aggregate functions directly, rather
than by their position in the field list. Listing 27 (SalesByMonthArtistAlbum.SQL in the
relevant folders of the materials for this session) shows the corresponding query for SQL
Server and MySQL.

Listing 27. Aggregating the data with SQL Server and MySQL is a little more readable.

SELECT Artist.Name as ArtistName,
Album.Title AS AlbumTitle,
YEAR(InvoiceDate) as SaleYear,
MONTH(InvoiceDate) as SaleMonth,
SUM(Quantity) AS TracksSold,
SUM(Quantity * Invoiceline.UnitPrice) AS Total
FROM Invoice
JOIN Invoiceline
ON Invoice.InvoiceID = Invoiceline.InvoiceID
JOIN Track
ON Invoiceline.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist
ON Album.ArtistID = Artist.ArtistID

Copyright 2024, Tamar E. Granor Page 29 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

GROUP BY Artist.Name, Album.Title, YEAR(InvoiceDate), Month(InvoiceDate)
ORDER BY 1, 2, 3, 4;

The rules for grouping are pretty simple. The field list contains two types of fields, those to
group on, and those that are being aggregated. Here, the fields to group on are SaleYear,
SaleMonth and Name, and the aggregated fields are TracksSolod and Total. (Versions of
VFP before VFP 8 allowed you to include fields in the list that were neither grouped or nor
aggregated, but doing so could give you misleading results. This article on my website
explains the problem in detail: http://tinyurl.com/leydygqw.)

Computing group totals

What the basic query doesn’t give you, though, is aggregation (that is, summaries) at any
level except the one you specify. That is, while you get the totals for a specific album in a
specific month, you don’t get them for the album for the whole year, or for an album for all
time, and so on. Figure 16 shows what we’re looking for. At the end of each year, a new
record shows the totals for that year. At the end of each album, another record shows the
album’s totals and at the end of each artist, yet another record has totals for that artist
across all albums, years, and months. (The sales data in the Chinook database is pretty
sparse, with most tracks having no sales in most months, but the figure shows one track
with sales in multiple months of a single year.)

Artistname Albumtitle Saleyear Salemonth Trackssold
Battlestar Galactica .NULL. .NULL. .NULL. 12
Battlestar Galactica (Classic) (Battlestar Galactica (Classic), Season 1 2010 2 2
Battlestar Galactica (Classic) iBattlestar Galactica (Classic), Season 1 2010 3 2
Battlestar Galactica (Classic) iBattlestar Galactica (Classic), Season 1 2010 .NULL. 4
Battlestar Galactica (Classic) Battlestar Galactica (Classic), Season 1 2011 3 9
Battlestar Galactica (Classic) ;Battlestar Galactica (Classic), Season 1 2011 NULL. 9
Battlestar Galactica (Classic) (Battlestar Galactica (Classic), Season 1 2012 9 4
Battlestar Galactica (Classic) iBattlestar Galactica (Classic), Season 1 2012 10 1
Battlestar Galactica (Classic) (Battlestar Galactica (Classic), Season 1 2012 .NULL. 5
Battlestar Galactica (Classic) Battlestar Galactica (Classic), Season 1 .NULL. NULL. 18
Battlestar Galactica (Classic) | .NULL. NULL. NULL. 18
Berliner Philharmoniker & Hans iSibelius: Finlandia 2012 10 1
Berliner Philharmoniker & Hans iSibelius: Finlandia 2012 .NULL. 1
Berliner Philharmoniker & Hans iSibelius: Finlandia NULL. NULL. 1
Berliner Philharmoniker & Hans:.NULL. .NULL. .NULL. 1
Berliner Philharmoniker & HerbeGrieg: Peer Gynt Suites & Sibelius: Pelléas 2012 10 1
Berliner Philharmoniker & HerbeEGrieg: Peer Gynt Suites & Sibelius: Pelléas 2012 .NULL. 1
Berliner Philharmoniker & HerbeGrieg: Peer Gynt Suites & Sibelius: Pelléas .NULL. .NULL. 1

Figure 16. [t can be useful to have group totals in the same cursor as the original data.

In VFP, there are three ways to get that data. One is to create a report and use totals and
report variables to compute and report that data, but of course, then you only have the data
as output, not in a VFP cursor.

The second choice is to use Xbase code to compute them based on the initial cursor. Listing
28 (SalesByMonthArtistAlbumWithTotals.PRG in the VFP folder of the materials for this
session) shows how to do this; it assumes you’ve already run the query in Listing 26. It
keeps running totals and counts for each level: year, city, country and overall. Then, when
one of those changes, it inserts the appropriate record. (Because the Chinook database

Copyright 2024, Tamar E. Granor Page 30 of 47

http://tinyurl.com/leydyqw

Go Beyond VFP's SQL with SQL Server and MySQL

doesn’t allow null values in its tables, we have to explicitly turn nulls on for the fields
where we might use them in the summary records.)

Listing 28. You can add subgroup aggregates by looping through the cursor.
* Now compute all the totals and add them to the result
LOCAL nYearTotal, nAlbumTotal, nArtistTotal, nGrandTotal
LOCAL nYearTracks, nAlbumTracks, nArtistTracks, nGrandTracks
LOCAL nCurYear, cCurAlbum, cCurArtist

* Create a new empty cursor to hold the results

SELECT * ;
FROM csrSales ;
WHERE .F. ;

INTO CURSOR csrSalesWithGroupTotals READWRITE

* Allow nulls in descriptor columns

ALTER TABLE csrSalesWithGroupTotals ;
ALTER ArtistName V(120) null

ALTER TABLE csrSalesWithGroupTotals ;
ALTER AlbumTitle V(160) null

ALTER TABLE csrSalesWithGroupTotals ;
ALTER SaleYear N(5) null

ALTER TABLE csrSalesWithGroupTotals ;
ALTER SaleMonth N(3) null

SELECT csrSales

STORE © TO nYearTotal, nAlbumTotal, nArtistTotal, nGrandTotal
STORE © TO nYearTracks, nAlbumTracks, nArtistTracks, nGrandTracks
nCurYear = csrSales.SaleYear

cCurAlbum = csrSales.AlbumTitle

cCurArtist = csrSales.ArtistName

SCAN
* First check for end of year, but we could be
* in the same year, but on a different album
* or artist.
IF csrSales.SaleYear <> m.nCurYear OR ;
NOT (csrSales.AlbumTitle == m.cCurAlbum) OR ;
NOT (csrSales.ArtistName == m.cCurArtist)

INSERT INTO csrSalesWithGroupTotals ;
VALUES (m.cCurArtist, m.cCurAlbum, ;
m.nCurYear, .null., ;
m.nYearTracks, ;
m.nYearTotal)
nCurYear = csrSales.SaleYear
STORE © TO nYearTracks, nYearTotal

* Now check for change of album

IF NOT (csrSales.AlbumTitle == m.cCurAlbum) OR ;
NOT (csrSales.ArtistName == m.cCurArtist)
INSERT INTO csrSalesWithGroupTotals ;

Copyright 2024, Tamar E. Granor Page 31 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

VALUES (m.cCurArtist, m.cCurAlbum, ;
.null., .null., ;
m.nAlbumTracks, ;
m.nAlbumTotal)

cCurAlbum = csrSales.AlbumTitle
STORE © TO nAlbumTracks, nAlbumTotal

* Now check for change of artist
IF NOT (csrSales.ArtistName == m.cCurArtist)
INSERT INTO csrSalesWithGroupTotals ;
VALUES (m.cCurArtist, .null., ;
.null., .null., ;
m.nArtistTracks, ;
m.nArtistTotal)

cCurArtist = csrSales.ArtistName
STORE © TO nArtistTracks, nArtistTotal
ENDIF
ENDIF
ENDIF

* Now handle current record by copying to result
* and adding to running totals
INSERT INTO csrSalesWithGroupTotals ;

VALUES (csrSales.ArtistName, ;
csrSales.AlbumTitle, ;
csrSales.SaleYear, ;
csrSales.SaleMonth, ;
csrSales.TracksSold, ;
csrSales.Total)

nYearTracks = nYearTracks + csrSales.TracksSold
nYearTotal = nYearTotal + csrSales.Total
nAlbumTracks = nAlbumTracks + csrSales.TracksSold
nAlbumTotal = nAlbumTotal + csrSales.Total
nArtistTracks = nArtistTracks + csrSales.TracksSold
nArtistTotal = nYearTotal + csrSales.Total
nGrandTracks = nGrandTracks + csrSales.TracksSold
nGrandTotal = nGrandTotal + csrSales.Total

ENDSCAN

* Save last set of totals at each level
INSERT INTO csrSalesWithGroupTotals ;
VALUES (m.cCurArtist, m.cCurAlbum, ;
m.nCurYear, .null., ;
m.nYearTracks, ;
m.nYearTotal)

INSERT INTO csrSalesWithGroupTotals ;
VALUES (m.cCurArtist, m.cCurAlbum, ;
.null., .null., ;
m.nAlbumTracks, ;
m.nAlbumTotal)

Copyright 2024, Tamar E. Granor Page 32 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

INSERT INTO csrSalesWithGroupTotals ;
VALUES (m.cCurArtist, .null., ;
.null., .null., ;
m.nArtistTracks, ;
m.nArtistTotal)

* Now insert grand totals
INSERT INTO csrSalesWithGroupTotals ;
VALUES (.null., .null., .null., .null., ;
m.nGrandTracks, ;
m.nGrandTotal)

The third choice is to do a series of queries, each grouping on different levels and then
consolidate the results. Listing 29 shows this version of the code; as in the previous
example, it assumes you've already run the query that creates csrSales. This code creates a
cursor with each album’s annual totals, one with each album’s overall totals, one with each
artist’s overall totals, and one containing the grand total. Then it uses UNION to combine all
the results into a single cursor. It's included in the VFP folder of the materials for this
session as SalesByMonthArtistAlbumWithTotalsSQL.PRG.

Listing 29. You can add the yearly, album, and artist totals using SQL, as well.

* Now year totals by track
SELECT ArtistName, ;
AlbumTitle, ;
SaleYear, ;
999 as SaleMonth, ;
SUM(TracksSold) AS TracksSold, ;
SUM(Total) AS Total ;
FROM csrSales ;
GROUP BY 1, 2, 3 ;
ORDER BY 1, 2, 3 ;
INTO CURSOR csrYearSales

* Now album totals across all time
SELECT ArtistName, ;
AlbumTitle, ;
99999 as SaleYear, ;
999 as SaleMonth, ;
SUM(TracksSold) AS TracksSold, ;
SUM(Total) AS Total ;
FROM csrSales ;
GROUP BY 1, 2 ;
ORDER BY 1, 2 ;
INTO CURSOR csrAlbumSales

* Now artist totals across all tracks
SELECT ArtistName, ;
REPLICATE('z', 160) AS AlbumTitle, ;
99999 as SaleYear, ;

Copyright 2024, Tamar E. Granor Page 33 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

999 as SaleMonth, ;
SUM(TracksSold) AS TracksSold, ;
SUM(Total) AS Total ;

FROM csrSales ;

GROUP BY 1 ;

ORDER BY 1 ;

INTO CURSOR csrArtistSales

* Now grand total
SELECT REPLICATE('z', 120) as ArtistName, ;
REPLICATE('z', 160) AS AlbumTitle, ;
99999 as SaleYear, ;
999 as SaleMonth, ;
SUM(TracksSold) AS TracksSold, ;
SUM(Total) AS Total ;
FROM csrSales ;
INTO CURSOR csrGrandTotal

* Consolidate into a single cursor
SELECT * ;
FROM csrSales ;
UNION ALL ;
SELECT * ;
FROM csrYearSales ;
UNION ALL ;
SELECT * ;
FROM csrAlbumSales ;
UNION ALL ;
SELECT * ;
FROM csrArtistSales ;
UNION ALL ;
SELECT * ;
FROM csrGrandtotal ;
ORDER BY ArtistName, AlbumTitle, ;
SaleYear, SaleMonth ;
INTO CURSOR csrSalesWithGroupTotals READWRITE

* Allow nulls in descriptor columns

ALTER TABLE csrSalesWithGroupTotals ;
ALTER ArtistName V(120) null

ALTER TABLE csrSalesWithGroupTotals ;
ALTER AlbumTitle V(160) null

ALTER TABLE csrSalesWithGroupTotals ;
ALTER SaleYear N(5) null

ALTER TABLE csrSalesWithGroupTotals ;
ALTER SaleMonth N(3) null

* Replace sorting values with nulls
UPDATE csrSalesWithGroupTotals ;
SET SaleMonth = .null. ;
WHERE SaleMonth = 999

UPDATE csrSalesWithGroupTotals ;
SET SaleYear = .null. ;

Copyright 2024, Tamar E. Granor Page 34 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

WHERE SaleYear = 99999

UPDATE csrSalesWithGroupTotals ;
SET AlbumTitle = .null. ;
WHERE AlbumTitle = REPLICATE('z', 160)

UPDATE csrSalesWithGroupTotals ;
SET ArtistName = .null. ;
WHERE ArtistName = REPLICATE('z', 120)

There’s one trick in this code. If we put null into the fields that are irrelevant for a given
total, when we sort the result, the totals appear above rather than below the records they
represent. Instead, we put an impossible value that sorts to the bottom initially, then
change it to null after ordering the data. As in the previous example, we have to modify the
cursor to accept null values before doing so.

Introducing ROLLUP

Of course, the reason for showing all this code is that the SQL engines make it much easier.
The ROLLUP clause lets you compute these summaries as part of the original query.

ROLLUP appears in the GROUP BY clause, looking like a function around the fields you
apply it to. Listing 30 shows the SQL Server equivalent of Listing 28 and Listing 29; the
code is included in the SQLserver folder of the materials for this session as
SalesByMonthArtistAlbumRollup.SQL. Figure 17 shows a portion of the results.

Listing 30. SQL Server’s ROLLUP clause computes the subgroup aggregates as part of the query.

SELECT Artist.Name as ArtistName,
Album.Title AS AlbumTitle,
YEAR(InvoiceDate) as SaleYear,
MONTH(InvoiceDate) as SaleMonth,
SUM(Quantity) AS TracksSold,
SUM(Quantity * InvoicelLine.UnitPrice) AS Total
FROM Invoice
JOIN Invoiceline
ON Invoice.InvoiceID = Invoiceline.InvoiceID
JOIN Track
ON InvoicelLine.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist
ON Album.ArtistID = Artist.ArtistID
GROUP BY ROLLUP(Artist.Name, Album.Title, YEAR(InvoiceDate), Month(InvoiceDate));

Copyright 2024, Tamar E. Granor Page 35 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

ArtistName Album Title SaleYear SaleMorth TracksSold Tota
Uz Achtung Baby 2013 MULL 1 0.99
Lz Achtung Baby MNLULL MULL 6 5.54
2 All That You Cant Leave Behind 2010 1 1 059
Lz All That You Cant Leave Behind 2010 MULL 1 0.99
uz2 All That You Cant Leave Behind 201 4 1 0.95
Lz All That You Cant Leave Behind 20Mm MULL 1 0.99
1z All That You Cant Leave Behind 2012 8 1 0.59
uz All That You Cant Leave Behind 2012 MULL 1 0.9
Lz All That You Cant Leave Behind 2013 11 1 0.59
1z All That You Cant Leave Behind 2013 12 2 158
uz All That You Cant Leave Behind 2013 MULL 3 2597
Uz All That You Cant Leave Behind MNLULL MULL 6 5.94
Lz B-Sides 1580-1550 2010 1 1 0.95

Figure 17. It’s easy to compute aggregates for subgroups in the SQL engines.

The syntax for ROLLUP is a little different in MySQL. Rather than applying it like a function
in the GROUP BY clause, you put WITH ROLLUP after the list of fields, as in Listing 31. This
version is included as SalesByMonthArtistAlbumRollup.SQL in the MySQL folder of the
materials for this session.

Listing 31. MySQL’s syntax for ROLLUP is a little different.

SELECT Artist.Name as ArtistName,
Album.Title AS AlbumTitle,
YEAR(InvoiceDate) as SaleYear,
MONTH(InvoiceDate) as SaleMonth,
SUM(Quantity) AS TracksSold,
SUM(Quantity * Invoiceline.UnitPrice) AS Total
FROM Invoice
JOIN Invoiceline
ON Invoice.InvoiceID = Invoiceline.InvoiceID
JOIN Track
ON Invoiceline.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist
ON Album.ArtistID = Artist.ArtistID
GROUP BY Artist.Name, Album.Title,
YEAR(InvoiceDate), Month(InvoiceDate) WITH ROLLUP;

The order of the fields in the ROLLUP clause matters. The last one listed is summarized
first. In Figure 17, you can see that the first level of summary is the whole year for a given
album, because the month column is listed last. If you change the order in the ROLLUP
clause to put the album last, as in Listing 32, the first summary level is a single month (and
year), across all albums for an artist; Figure 18 shows partial results.

Copyright 2024, Tamar E. Granor Page 36 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

Listing 32. The order of the fields in the ROLLUP clause matters. Changing the order changes what
summaries you get.

GROUP BY ROLLUP(Artist.Name, YEAR(InvoiceDate), Month(InvoiceDate), Album.Title)

AistMame Album Title SaleYear SaleMonth TracksSold Total

AC/DC | For Those About To Rock We Salute You 2009 1 4 196
“acme Let There Be Rock 2009 1 2 158
AC/DC NULL 2009 1 5 5.94
AC/DC NULL 2009 NULL 6 5.94
AC/DC For Those About To Rock We Salute You 2010 4 3 297
AC/DC Let There Be Rock 2010 4 1 059
AC/DC NULL 2010 4 4 196
AC/DC NULL 2010 NULL 4 196
AC/DC For Those About To Rock We Salute You 2011 7 2 1598
AC/DC Let There Be Rock 2011 7 1 0.99
AC/DC NULL 2011 7 3 297

Figure 18. When you change the order of fields in the ROLLUP clause, you get a different set of summaries.

In SQL Server, the ROLLUP clause doesn’t have to surround all the fields in the GROUP BY,
only the ones for which you want summaries. So, if you don’t need a grand total in the
previous example, you can put Artist. Name before the ROLLUP clause, as in Listing 33.
Similarly, if you want summaries only for each city and year, put both Artist.Name and
Album.Title before the ROLLUP clause. You can also put fields after the ROLLUP clause, but
in my testing, the results aren’t terribly useful.

Listing 33. In SQL Server, not all fields have to be included in ROLLUP, just those that should be summarized.
With this GROUP BY clause, the results won’t include grand totals because we’re not rolling up the country.

GROUP BY Artist.Name, ROLLUP(Album.Title, YEAR(InvoiceDate), Month(InvoiceDate))

Note also that when ROLLUP is involved, you use the source field names, not the result field
names in the GROUP BY clause.

MySQL doesn’t currently support rolling up only some of grouping items.

ROLLUP with cross-products

In SQL Server, you can use two ROLLUP clauses in the same GROUP BY. Doing so gives you
the cross-product of the two groups. That is, you get the results you'd get from either
ROLLUP, but you also get combinations of the two.

For example, if you change the GROUP BY clause in Listing 30 to the one shown in Listing
34, you get all the rows you had before, but you also get summaries for each artist for each
month and year, as well as overall summaries for each month and for each year. Figure 19
shows a part of the results that didn’t exist in the earlier example. The complete query is
included in the SQLServer folder of the materials for this session as
SalesByMonthArtistAlbumRollupXProd.SQL.

Copyright 2024, Tamar E. Granor Page 37 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

Listing 34. You can use two ROLLUP clauses to generate the cross-product of the two sets of fields in SQL
Server.

GROUP BY ROLLUP(YEAR(InvoiceDate), Month(InvoiceDate)),
ROLLUP(Artist.Name, Album.Title)

AtistMame Album Title SaleYear SaleMorth TracksSold — Total
Wan Halen MULL 2013 MULL 6 5.94
Warious Arists MULL 2013 1 3 2597
Warious Artists MULL 2013 2 1 0.99
Warious Artists MULL 2013 MULL 4 31596
Welvet Revalver MULL 2013 12 1 0.95
Welvet Revaolver MULL 2013 MULL 1 0.59
Vinicius De Moraes MULL 2013 12 2 158
Winicius De Moraes MULL 2013 MULL 2 158
Zeca Pagodinha MULL 2013 12 2 158
Zeca Pagodinha MULL 2013 MULL 2 158
MNULL MULL 2013 MULL 442 450.58
MULL MULL 2010 2 38 46.62
MULL MULL 2012 7 38 3562

Figure 19. Using the GROUP BY clause in Listing 34 with the earlier query provides summaries for not just
each album by year, each album overall, and each artist, but also for each artist by month and by year, and for
each month and each year.

As with a single ROLLUP clause, the order in which you list the ROLLUP clauses and the
order of the fields within them determines both what summaries you get and, if you don’t
use an ORDER BY clause, the order of the records in the result.

Adding descriptions to summaries

In all the examples so far, the null value indicates which field is being summarized. But you
can put descriptive data in those fields instead.

Wrap the columns being rolled up with ISNULL() (in SQL Server) or IFNULL() (in MySQL)
and specify the string you want in the summary rows as the alternate. (ISNULL() in SQL
Server and IFNULL() in MySQL behave like VFP’s NVL() function, returning the first
parameter unless it’s null, in which case they return the second parameter.) Listing 35
(SalesByMonthArtistAlbumRollupWDesc.SQL in the MySQL folder of the materials for this
session) shows the same query as Listing 30, except that each of the non-aggregated fields
includes a description to use when it's summarized. Doing so requires changing the year
and month columns to character, of course; in MySQL, you do that with the CONVERT()
function. Figure 20 shows a chunk of the results.

Listing 35. Rather than having null indicate a summary row, use the description you want.

SELECT IFNULL(Artist.Name, 'All artists') as ArtistName,
IFNULL(Album.Title, 'All albums') AS AlbumTitle,
IFNULL(CONVERT(YEAR(InvoiceDate), CHAR), 'All years') as SaleYear,

Copyright 2024, Tamar E. Granor Page 38 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

IFNULL (CONVERT(MONTH(InvoiceDate), CHAR), 'All months') as SaleMonth,
SUM(Quantity) AS TracksSold,
SUM(Quantity * Invoiceline.UnitPrice) AS Total
FROM Invoice
JOIN InvoicelLine
ON Invoice.InvoiceID = Invoiceline.InvoiceID
JOIN Track
ON Invoiceline.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist
ON Album.ArtistID = Artist.ArtistID
GROUP BY Artist.Name, Album.Title,
YEAR(InvoiceDate), Month(InvoiceDate) WITH ROLLUP ;

AC/DC Let There Be Rock 2010 4 1 0.99
AC/DC Let There Be Rock 2010 Al months 1 0,99
AC/DC Let There Be Rock 2011 7 1 0.99
AC/DC Let There Be Rock 2011 Almonths 1 0.99
AC/DC Let There Be Rock 2012 11 2 1.98
ac/Dc Let There Be Rock 2012 Almonths 2 1.93
AC/DC Let There Be Rock Al years Allmonths & 5.94
AC/DC All albums Al years Allmonths 16 15.84
Academy ... The World of Classical Favourites 2012 10 1 0,99
Academy ... The World of Classical Favourites 2012 Al months 1 0,99
Academy ... The World of Classical Favourites Al years Allmonths 1 0.99
1 0.99

Academy ... Al albums All years All months

Figure 20. Including descriptions instead of null makes it easier to understand the summary lines.

The SQL Server version of this query is included in the SQLServer folder of the materials for
this session as SalesByMonthArtistAlbumRollupWDesc.SQL. In addition to using ISNULL()
rather than IFNULL(), it uses STR() to convert the year and month to character.

Introducing CUBE

ROLLUP is limited to summarizing based only on the hierarchy you specify. For example,
the query in Listing 30 doesn’t give summaries for each artist for each year. While you can
get that result with ROLLUP, you have to give up some other summaries to do so.

SQL Server offers another option. If you want to summarize based on every possible
combination of values, use CUBE rather than ROLLUP. The query in Listing 36 is identical
to the one in Listing 30, except that the GROUP BY clause specifies CUBE rather than
ROLLUP. Figure 21 shows part of the results. The items shown include summaries you
wouldn’t get with ROLLUP, such as the summary for AC/DC across all Aprils. This query is
included in the SQLserver folder of the materials for this session as
SalesByMonthArtistAlbumCube.sql.

Listing 36. Use the CUBE clause to get summaries for all combinations of values (in SQL Server).

SELECT Artist.Name as ArtistName,

Copyright 2024, Tamar E. Granor Page 39 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

Album.Title AS AlbumTitle,
YEAR(InvoiceDate) as SaleYear,
MONTH(InvoiceDate) as SaleMonth,
SUM(Quantity) AS TracksSold,
SUM(Quantity * Invoiceline.UnitPrice) AS Total
FROM Invoice
JOIN Invoiceline
ON Invoice.InvoiceID = Invoiceline.InvoiceID
JOIN Track
ON InvoicelLine.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist
ON Album.ArtistID = Artist.ArtistID
GROUP BY CUBE(Artist.Name, Album.Title, YEAR(InvoiceDate), Month(InvoiceDate));

AtistName Album Title SaleYear SaleMorth TracksSold Total
2 Zooropa MLUILL g 2 158
MULL Zooropa MLUILL g 2 158
U2 Zooropa MLUILL 12 2 198
MULL Zooropa MLUILL 12 2 158
MULL Zooropa MLUILL MULL 5 8.51
AC/DC MULL MLUILL 1 6

AC/DC MULL MLUILL 4 4

AC/DC MULL MNULL 7 3

AC/DC MULL MLUILL 11 3

AC/DC MULL MLUILL MULL 16
Academy of 5t M... MNULL MULL 10 1
Academy of St M., MULL MLUILL MULL 1

Figure 21. When you specify CUBE, every possible combination of values is summarized.

However, some of the results of this query are misleading. Some of the rows near the top in
Figure 21 should give you a clue as to the problem. We're summarizing by name of an
album for a month. What if we have multiple albums with the same name? The Chinook
data doesn’t include multiple albums with the same title or artists with the same name, but
in the real world, this happens all the time. (Think how many albums are titled “Greatest
Hits,” for example.) If there were repeats, we’d get totals for a month or a month and year
across the repeated title.

The way to avoid the problem is to group fields together if their data is linked. You do that
by putting parentheses around the fields to be grouped. Listing 37 shows the same query,
but with the artist name and album title fields grouped together. (It also adds an ORDER BY
clause to sort the results into a useful order.) It’s included in the SQLserver folder of the
materials for this session as SalesByMonthArtistAlbumCubeCombined.sql. Figure 22
shows partial results; note that there are no totals where ArtistName is null, but
AlbumTitle is not.

Copyright 2024, Tamar E. Granor Page 40 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

Listing 37. Group fields with parentheses in the CUBE clause to have them treated as a single dimension.

SELECT Artist.Name as ArtistName,
Album.Title AS AlbumTitle,
YEAR(InvoiceDate) as SaleYear,
MONTH(InvoiceDate) as SaleMonth,
SUM(Quantity) AS TracksSold,
SUM(Quantity * Invoiceline.UnitPrice) AS Total
FROM Invoice
JOIN Invoiceline
ON Invoice.InvoiceID = InvoicelLine.InvoiceID
JOIN Track
ON InvoicelLine.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist
ON Album.ArtistID = Artist.ArtistID
GROUP BY CUBE((Artist.Name, Album.Title), YEAR(InvoiceDate), Month(InvoiceDate))
ORDER BY ArtistName, AlbumTitle, SaleYear, SaleMonth;

ArtistMame Album Title SaleYear SaleMonth TracksSold Total
MULL MLUILL 2013 8 EH] 3762
MULL MLUILL 2013 5 EH] 3762
MULL MLUILL 2013 10 iz 3762
MULL MLUILL 2013 11 EH] 4562
MULL MULL 2013 12 k] 362
AC/DC For Those About To Rock We Salute You MULL MNULL 10 550
AC/DC For Thoze About To Rock We Salute You MULL 1 4 3156
AC/DC For Those About To Rock We Salute You NULL 4 3 297
AC/DC For Those About To Rock We Salute You MULL 7 2 158
AC/DC For Thoze About To Rock We Salute You MULL 11 1 0.99
AC/DC For Those About To Rock We Salate You 2009 MNULL 4 396
AC/DC For Thoze About To Rock We Salate You 2009 1 4 156
AC/DC For Thoze About To Rock We Salute You 2010 MNULL 3 257

Figure 22. With artist name and album title grouped, the results don’t have totals for an album without the
associated artist.

If you don’t want summaries for each month across the years (that is, for example, for all
Aprils), you can group year and month in the CUBE clause, as well, as in Listing 38. A query
that uses this CUBE clause is included in the SQLserver folder of the materials for this
session as SalesByCountryCityCubeCombinedBoth.sql.

Listing 38. You can have multiple groups of fields within the CUBE clause.

GROUP BY CUBE((Artist.Name, Album.Title),
(YEAR(InvoiceDate), Month(InvoiceDate)))

Copyright 2024, Tamar E. Granor Page 41 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

Fine tuning the set of summaries

ROLLUP and CUBE take care of very common scenarios, but each is restricted in which set
of summaries you can get, and each includes the basic aggregated data in the result. What if
you want a different set of summaries? What if you want just the summaries without the
basic aggregated data?

In our example, suppose you want to see the summary for each month across all years and
artists, the summary for each year across all months and artists, and the summary for each
album across all months and years? You could get those results by doing a separate query
for each and then combining them with UNION ALL, as in Listing 39 (SummariesUnion.SQL
in the MySQL and SQLServer folders of the materials for this session); Figure 23 shows
partial results.

Listing 39. You can retrieve just the summaries using UNION ALL.

SELECT null as ArtistName,
null AS AlbumTitle,
null as SaleYear,
MONTH(InvoiceDate) as SaleMonth,
SUM(Quantity) AS TracksSold,
SUM(Quantity * Invoiceline.UnitPrice) AS Total
FROM Invoice
JOIN Invoiceline
ON Invoice.InvoiceID = Invoiceline.InvoiceID
JOIN Track
ON InvoicelLine.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist
ON Album.ArtistID = Artist.ArtistID
GROUP BY Month(InvoiceDate)
UNION ALL
SELECT null as ArtistName,
null AS AlbumTitle,
YEAR(InvoiceDate) as SaleYear,
null as SaleMonth,
SUM(Quantity) AS TracksSold,
SUM(Quantity * Invoiceline.UnitPrice) AS Total
FROM Invoice
JOIN InvoicelLine
ON Invoice.InvoiceID = Invoiceline.InvoiceID
JOIN Track
ON Invoiceline.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist
ON Album.ArtistID = Artist.ArtistID
GROUP BY YEAR(InvoiceDate)
UNION ALL
SELECT Artist.Name as ArtistName,
Album.Title AS AlbumTitle,
null as SaleYear,

Copyright 2024, Tamar E. Granor Page 42 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

null as SaleMonth,
SUM(Quantity) AS TracksSold,
SUM(Quantity * Invoiceline.UnitPrice) AS Total
FROM Invoice
JOIN InvoicelLine
ON Invoice.InvoiceID = Invoiceline.InvoiceID
JOIN Track
ON Invoiceline.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist
ON Album.ArtistID = Artist.ArtistID
GROUP BY Artist.Name, Album.Title
ORDER BY ArtistName, AlbumTitle, SaleYear, SaleMonth ;

AvtistMame AlbumTitle SaleYear SaleMonth TracksSold Total
MULL MULL MULL 1 176 186.24
MULL MULL MULL 12 150 189.10
MULL MULL 2009 MULL 454 445 46
MULL MULL 2010 MULL 455 48145
MULL MULL 2011 MULL 447 46558
MULL MULL 2012 MULL 447 47753
MULL MULL 2013 MULL 442 450.58
AC/DC For Those About Ta Rock We Salute You MULL MULL 10 5.50
AC/DC Let There Be Rock MULL MULL & 5.94
Academy of 5t. Martin in the Fields & Sir Me... The Ward of Classical Favourtes MNULL MNULL 1 0.95
Academy of St. Martin in the Fields, John Bir... Fauré: Requiem, Ravel: Pavane & Cthers MULL MULL 1 0.99
Academy of S5t. Martin in the Fields, Sir Mevil... Bach: Onchestral Suites Nos. 1-4 MULL MULL 2 1.58
Accept Balls to the Wall MULL MULL 2 158

Figure 23. Sometimes, you want only the summaries, not the original aggregations.

That’s a lot of code. SQL Server (but not MySQL) offers an alternative way to do this, using a
feature called grouping sets. It lets you fine tune which summaries you get. With grouping
sets, you explicitly tell the query which combinations to summarize. The grouping sets
equivalent of the UNIONed query in Listing 39 is shown in Listing 40 (included in the
SQLServer folder of the materials for this session as SummariesGroupingSets.SQL).

Listing 40. GROUPING SETS let you ask for the specific set of summaries you want.

SELECT Artist.Name as ArtistName,
Album.Title AS AlbumTitle,
YEAR(InvoiceDate) as SaleYear,
MONTH(InvoiceDate) as SaleMonth,
SUM(Quantity) AS TracksSold,
SUM(Quantity * Invoiceline.UnitPrice) AS Total
FROM Invoice
JOIN Invoiceline
ON Invoice.InvoiceID = Invoiceline.InvoiceID
JOIN Track
ON Invoiceline.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist

Copyright 2024, Tamar E. Granor Page 43 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

ON Album.ArtistID = Artist.ArtistID
GROUP BY GROUPING SETS((MONTH(InvoiceDate)),
(YEAR(InvoiceDate)),
(Artist.Name, Album.Title))
ORDER BY ArtistName, AlbumTitle, SaleYear, SaleMonth;

The GROUP BY clause indicates three grouping sets here, each enclosed in parentheses:
(MONTH(InvoiceDate)), which requests totals for each month, across all artists and years;
(YEAR(OrderDate)), which asks for totals for each year, across all artists and months; and
(Artist.Name, Album.Title), which asks for totals for each artist/album combination, across
all months and years. The parentheses are required in the last case, to show that city and
country are to be treated as a set. While they’re not required for the other two items, they
do make clear that each is to be handled separately.

ROLLUP and CUBE are actually special cases of grouping sets. You can use grouping sets to
get the same results, though it makes the code longer. Listing 41 shows the GROUP BY
clause for the grouping sets equivalent of the ROLLUP query in Listing 30. (The complete
version of this query is included in the SQLServer folder of the materials for this session as
GroupingSetsRollupEquiv.sql.)

Listing 41. You can use GROUPING SETS instead of ROLLUP, but it calls for more code in the GROUP BY
clause.

GROUP BY GROUPING SETS (
(Artist.Name, Album.Title, YEAR(InvoiceDate), Month(InvoiceDate)),
(Artist.Name, Album.Title, YEAR(InvoiceDate)),
(Artist.Name, Album.Title),
(Artist.Name),

)

There are five grouping sets shown. The first set, which includes all four non-aggregated
fields is the equivalent of simply doing GROUP BY with that list. It does the aggregation, but
no summaries.

Each grouping set after that contains one fewer field than the preceding one, until the last
contains no field, indicating that the summary should be computed over the entire data set.
Looking at this GROUP BY clause helps clarify what ROLLUP does. It aggregates on all the
fields listed, then one by one, removes fields from the right and aggregates again.

For the equivalent of CUBE, the GROUPING SETS list is even more unwieldy, but again it
sheds light on what's going on when you use CUBE. Listing 42 shows the GROUP BY clause
for a query (GroupingSetsCubeCombinedEquiv.sql in the SQLServer folder of the materials
for this session) that produces the same results as Listing 37.

Listing 42. Replacing CUBE with GROUPING SETS lets you see all the cases that CUBE handles.

GROUP BY GROUPING SETS(
(CountryRegion.Name, Address.City, YEAR(OrderDate), MONTH(OrderDate)),
(CountryRegion.Name, Address.City, YEAR(OrderDate)),
(CountryRegion.Name, Address.City, MONTH(OrderDate)),

Copyright 2024, Tamar E. Granor Page 44 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

(CountryRegion.Name, Address.City),
(YEAR(OrderDate), MONTH(OrderDate)),
(YEAR(OrderDate)),
(MONTH(OrderDate)),

0))

Note that unlike the CUBE query, you don’t have to (in fact, can’t) enclose the country/city
pair in parentheses when they’re used with other fields. You just omit any grouping sets
that include one without the other.

Of course, there’s no reason to write out the long version when you can use ROLLUP or
CUBE. But when you need something else, having grouping sets available is a big help.

As Listing 40 demonstrates, grouping sets also let you get summaries without including
the basic aggregated data. Just omit the grouping set that lists all the fields on which to
aggregate. Be aware, though, that as with any other GROUP BY clause, every field in the
field list that doesn’t include an aggregate function must appear somewhere in the list of
grouping sets.

Listing 43 shows the GROUP BY clause for a query that's equivalent to Listing 37, but
without the first grouping set, so that only the summaries are included. Figure 24 shows
partial results; if you compare to Figure 22, you can see that the rows where nothing is
null have been eliminated. This query is included as GroupingSetsWithoutAggregates.sql in
the SQLServer folder of the materials for this session.

Listing 43. By omitting the grouping set that includes all non-aggregated fields, you can get just the
summaries you want without the base aggregated data.

GROUP BY GROUPING SETS (
(Artist.Name, Album.Title, YEAR(InvoiceDate)),
(Artist.Name, Album.Title, MONTH(InvoiceDate)),
(Artist.Name, Album.Title),
(YEAR(InvoiceDate), Month(InvoiceDate)),
(YEAR(InvoiceDate)),
(Month(InvoiceDate)),

0)

Copyright 2024, Tamar E. Granor Page 45 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

AistMame AlbumTitle SaleYear SaleMonth TracksSold Total
MULL MLUILL 2013 5 EH] 3762
MULL MLUILL 2013 6 EH] 3762
MULL MLUILL 2013 7 EH] 3762
MULL MLUILL 2013 8 EH] 3762
MULL MLUILL 2013 9 EH] 3762
MULL MULL 2013 10 3 37.62
MULL MLUILL 2013 11 £H] 4562
MULL MLUILL 2013 12 EH] 3862
AC/DC For Those About To Rock We Salute You NULL MULL 10 5.90
AC/DC For Those About To Rock We Salute You MULL 1 4 156
AC/DC For Thoze About To Rock We Salute You MULL 4 3 257
AC/DC For Those About To Rock We Salute You NULL 7 2 153
AC/DC For Thoze About To Rock We Salute You MULL 11 1 0.99

Figure 24. When you exclude the grouping set that contains all aggregated fields, the result contains only the
summaries.

Make it pretty

As with the ROLLUP clause, for both CUBE and GROUPING SETS, you can make the results
easier to understand by using ISNULL() to replace the nulls with meaningful descriptions.

Listing 44 shows the query from Listing 37 with the descriptions added. Figure 25 shows
partial results. The query is included in the SQLServer folder of the materials for this
session as SalesByCountryCityCubeCombinedWDesc.sql.

Listing 44. You can replace the nulls that indicate summary records with descriptions.

SELECT isnull(Artist.Name, 'All artists') as ArtistName,
isnull(Album.Title, 'All albums') AS AlbumTitle,
isnull(str(YEAR(InvoiceDate)), 'All years') as SaleYear,
isnull(str(MONTH(InvoiceDate)), 'All months') as SaleMonth,
SUM(Quantity) AS TracksSold,

SUM(Quantity * InvoicelLine.UnitPrice) AS Total
FROM Invoice
JOIN Invoiceline
ON Invoice.InvoiceID = Invoiceline.InvoiceID
JOIN Track
ON InvoicelLine.TrackID = Track.TrackID
JOIN Album
ON Track.AlbumID = Album.AlbumID
JOIN Artist
ON Album.ArtistID = Artist.ArtistID
GROUP BY CUBE((Artist.Name, Album.Title), YEAR(InvoiceDate), Month(InvoiceDate))
ORDER BY ArtistName, AlbumTitle, SaleYear, SaleMonth;

Copyright 2024, Tamar E. Granor Page 46 of 47

Go Beyond VFP's SQL with SQL Server and MySQL

AtistMame Album Title SaleYear SaleMonth TracksSold Total
Alice In Chaing Facelift All vears 4 2 1598
Alice In Chains Facelift All years 7 2 1.58
Alice In Chaing Facelift All vears 11 1 0.99
Alice In Chaing Facelift Alyears Almorths 7 6.93
Al artists Al albums 2005 1 36 35.64
Al artists All albums 2009 2 33 3762
Al artigts All albums 2009 3 33 3762
Al artists All albums 2009 4 38 3762
Al artists All albums 2009 5 33 3762
Al artigts All albums 2009 B 33 3762
Al artists All albums 2009 7 k] 3762
Al artigts All albums 2009 8 33 3762
Al artists All albums 2009 9 33 3762

Figure 25. You can use ISNULL() to substitute descriptions for nulls, and make the results easier to
comprehend. As the figure indicates, you may need to adjust your ORDER BY clause to get things in the order
you want, depending on what descriptions you provide.

What about VFP?

I showed how to do the equivalent of ROLLUP in VFP. The second approach shown there,
using a separate query for each summary you want, and then combining the results with
UNION, works for CUBE and GROUPING SETS, as well. Of course, the resulting code is fairly
opaque. That’s why having these shortcuts in SQL Server is so nice.

Keep on learning

While I read articles and examples of each of these features to learn them, it was trying
different variations that really helped me understand them. I strongly recommend you
start with the examples here and then try building analogous code against your own data
or modifying this code to see the results.

Beyond that, the features in this paper are only a small subset of things SQL Server and
MySQL offer that aren’t part of VFP’s SQL. If you're really trying to learn more SQL, find a
Q&A forum for the flavor of SQL you're learning and start reading. I've learned a lot reading
the SQL Server forum at www.tek-tips.com; http: //www.sqglservercentral.com/ has articles
and Q&A forums. There are forums for MySQL at https://forums.mysgl.com/.
StackOverflow tends to have lots of SQL content as well.

Copyright 2024, Tamar E. Granor Page 47 of 47

http://www.tek-tips.com/
http://www.sqlservercentral.com/
https://forums.mysql.com/

